Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Modeling | Detecting Spam
Identifying Spam Emails

bookModeling

We will explore a straightforward model known as Logistic Regression, which is a supervised machine learning algorithm designed for classification problems.

It is particularly useful for predicting binary outcomes (1 / 0, Yes / No, True / False) based on a set of independent variables. The algorithm constructs a model that calculates a probability for each potential outcome and makes predictions based on which outcome is most likely.

The model employs a logistic function to map input variables to probabilities that range between 0 and 1. While primarily used for binary classification, Logistic Regression can also be adapted for multi-class classification through the training of multiple binary classifiers and combining their outcomes. This method is widely utilized in various fields, including medical research, marketing, and social sciences.

Завдання

Swipe to start coding

  1. Import the LogisticRegression class.
  2. Initialize the model.
  3. Use the correct method to fit the model.

Рішення

Mark tasks as Completed
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 10

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Запитайте мені питання про цей предмет

Сумаризуйте цей розділ

Покажіть реальні приклади

Awesome!

Completion rate improved to 9.09

bookModeling

We will explore a straightforward model known as Logistic Regression, which is a supervised machine learning algorithm designed for classification problems.

It is particularly useful for predicting binary outcomes (1 / 0, Yes / No, True / False) based on a set of independent variables. The algorithm constructs a model that calculates a probability for each potential outcome and makes predictions based on which outcome is most likely.

The model employs a logistic function to map input variables to probabilities that range between 0 and 1. While primarily used for binary classification, Logistic Regression can also be adapted for multi-class classification through the training of multiple binary classifiers and combining their outcomes. This method is widely utilized in various fields, including medical research, marketing, and social sciences.

Завдання

Swipe to start coding

  1. Import the LogisticRegression class.
  2. Initialize the model.
  3. Use the correct method to fit the model.

Рішення

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 10
some-alt