Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Figures' Linear Transformations | Linear Algebra
Mathematics for Data Analysis and Modeling

Свайпніть щоб показати меню

book
Challenge: Figures' Linear Transformations

Завдання

Swipe to start coding

Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:

  1. Rotation transformation rotates a figure around a specific point or axis.
  2. Scale transformation resizes a figure by changing its size along each axis.

Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:

  1. Сreate rotation matrix that rotates a figure by np.pi / 3 degrees.
  2. Create a scaling matrix with the parameters scale_x = 2 and scale_y = 0.5.
  3. Apply the rotation_matrix to the square.
  4. Apply the scaling_matrix to the result of the previous transformation.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Challenge: Figures' Linear Transformations

Завдання

Swipe to start coding

Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:

  1. Rotation transformation rotates a figure around a specific point or axis.
  2. Scale transformation resizes a figure by changing its size along each axis.

Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:

  1. Сreate rotation matrix that rotates a figure by np.pi / 3 degrees.
  2. Create a scaling matrix with the parameters scale_x = 2 and scale_y = 0.5.
  3. Apply the rotation_matrix to the square.
  4. Apply the scaling_matrix to the result of the previous transformation.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt