Challenge: Optimising Function Of Multiple Variables
Swipe to start coding
The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.
Your task is to use the optimization method to find the best parameters of the linear regression function:
- Create an
initial_params
variable that will store initial values for parameters of the linear regression function. - Provide minimization of the MSE function.
- Get the resulting optimal values of parameters.
Note
You can find more information about linear regression in Linear Regression with Python course.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 4.76Awesome!
Completion rate improved to 4.76
Challenge: Optimising Function Of Multiple Variables
Swipe to start coding
The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.
Your task is to use the optimization method to find the best parameters of the linear regression function:
- Create an
initial_params
variable that will store initial values for parameters of the linear regression function. - Provide minimization of the MSE function.
- Get the resulting optimal values of parameters.
Note
You can find more information about linear regression in Linear Regression with Python course.
Рішення
Дякуємо за ваш відгук!
single
Awesome!
Completion rate improved to 4.76
Challenge: Optimising Function Of Multiple Variables
Свайпніть щоб показати меню
Swipe to start coding
The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.
Your task is to use the optimization method to find the best parameters of the linear regression function:
- Create an
initial_params
variable that will store initial values for parameters of the linear regression function. - Provide minimization of the MSE function.
- Get the resulting optimal values of parameters.
Note
You can find more information about linear regression in Linear Regression with Python course.
Рішення
Дякуємо за ваш відгук!