Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Precedent Finder | Analyzing Legal Case Data
Python for Legal Professionals

bookChallenge: Precedent Finder

In legal research, it is often necessary to determine which cases have been influenced by a particular precedent. This can involve tracing not just direct citations but also indirect ones—cases that cite a precedent through a chain of intermediate cases. To accomplish this in Python, you can use either recursion or iteration to traverse a citation network represented as a dictionary. In this context, a dictionary maps each case ID to a list of case IDs it cites as precedents.

To find all cases that are influenced by a given precedent, you need to examine each case in the dictionary and check if it cites the specified precedent, either directly or through a series of intermediate citations. This process is similar to searching through a graph, where cases are nodes and citations are edges. By systematically exploring each case's citations—either by recursively checking if a case's citations eventually lead to the target precedent, or by using an explicit stack or queue for iteration—you can build a set of all cases that are connected to the precedent, directly or indirectly. This approach ensures you identify every case that is part of the citation network rooted at the precedent in question.

Завдання

Swipe to start coding

Write a function that, given a dictionary mapping case IDs to lists of cited precedents and a precedent ID, returns a set containing all case IDs that directly or indirectly cite the specified precedent.

  • For each case in the dictionary, determine if it cites the specified precedent directly or through a chain of citations.
  • Collect all such case IDs into a set and return it.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Can you show me an example of how to implement this in Python?

What is the difference between using recursion and iteration for this task?

How can I visualize the citation network once I have the results?

close

bookChallenge: Precedent Finder

Свайпніть щоб показати меню

In legal research, it is often necessary to determine which cases have been influenced by a particular precedent. This can involve tracing not just direct citations but also indirect ones—cases that cite a precedent through a chain of intermediate cases. To accomplish this in Python, you can use either recursion or iteration to traverse a citation network represented as a dictionary. In this context, a dictionary maps each case ID to a list of case IDs it cites as precedents.

To find all cases that are influenced by a given precedent, you need to examine each case in the dictionary and check if it cites the specified precedent, either directly or through a series of intermediate citations. This process is similar to searching through a graph, where cases are nodes and citations are edges. By systematically exploring each case's citations—either by recursively checking if a case's citations eventually lead to the target precedent, or by using an explicit stack or queue for iteration—you can build a set of all cases that are connected to the precedent, directly or indirectly. This approach ensures you identify every case that is part of the citation network rooted at the precedent in question.

Завдання

Swipe to start coding

Write a function that, given a dictionary mapping case IDs to lists of cited precedents and a precedent ID, returns a set containing all case IDs that directly or indirectly cite the specified precedent.

  • For each case in the dictionary, determine if it cites the specified precedent directly or through a chain of citations.
  • Collect all such case IDs into a set and return it.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
single

single

some-alt