Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Case Trend Visualizer | Analyzing Legal Case Data
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Legal Professionals

bookChallenge: Case Trend Visualizer

When you want to visualize legal case trends over time, you often need to group your data by important columns—such as by 'Year' and 'Outcome'—to reveal patterns. In Python, you can use pandas to read and group data, even from a hardcoded CSV string. To plot these groupings, libraries like matplotlib and seaborn are especially useful. For this challenge, you will work with a hardcoded CSV string that contains legal case data with 'Year' and 'Outcome' columns. First, you will group the data by both year and outcome, count the number of cases for each outcome in each year, and then create a bar chart to visualize these trends. matplotlib or seaborn can create the chart, and you can save the resulting figure as an image file using their built-in save functions. This approach allows you to share your insights visually without needing to read or write any data files.

Завдання

Swipe to start coding

Write a script that visualizes the number of legal cases per outcome for each year using hardcoded CSV data. The script should generate a grouped bar chart and save the chart as an image file.

  • Read the hardcoded CSV string into a pandas DataFrame.
  • Group the data by both 'Year' and 'Outcome', counting the number of cases for each combination.
  • Create a bar chart showing the number of cases per outcome for each year.
  • Save the resulting chart as an image file with the specified filename.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Can you show me an example of the hardcoded CSV string?

How do I group the data by 'Year' and 'Outcome' in pandas?

Can you explain how to create and save the bar chart after grouping the data?

close

bookChallenge: Case Trend Visualizer

Свайпніть щоб показати меню

When you want to visualize legal case trends over time, you often need to group your data by important columns—such as by 'Year' and 'Outcome'—to reveal patterns. In Python, you can use pandas to read and group data, even from a hardcoded CSV string. To plot these groupings, libraries like matplotlib and seaborn are especially useful. For this challenge, you will work with a hardcoded CSV string that contains legal case data with 'Year' and 'Outcome' columns. First, you will group the data by both year and outcome, count the number of cases for each outcome in each year, and then create a bar chart to visualize these trends. matplotlib or seaborn can create the chart, and you can save the resulting figure as an image file using their built-in save functions. This approach allows you to share your insights visually without needing to read or write any data files.

Завдання

Swipe to start coding

Write a script that visualizes the number of legal cases per outcome for each year using hardcoded CSV data. The script should generate a grouped bar chart and save the chart as an image file.

  • Read the hardcoded CSV string into a pandas DataFrame.
  • Group the data by both 'Year' and 'Outcome', counting the number of cases for each combination.
  • Create a bar chart showing the number of cases per outcome for each year.
  • Save the resulting chart as an image file with the specified filename.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
single

single

some-alt