Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Data Validator for API Responses | Advanced QA Automation Techniques
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for QA Engineers

bookChallenge: Data Validator for API Responses

In automated QA, data validation is a crucial step to ensure that API responses meet the expected structure and content. As you work with APIs, you will often encounter scenarios where responses are missing required fields, which can lead to test failures or undetected issues in production. Automating the validation of API responses not only saves time but also increases the reliability of your testing process. Your challenge is to implement a function that inspects a batch of API responses (represented as dictionaries) and identifies any responses that are missing key fields. This technique is essential for robust automated QA pipelines and helps you quickly spot incomplete or malformed data.

Завдання

Swipe to start coding

Write a function that checks a list of API response dictionaries for missing required fields.

  • The function must check each dictionary in the responses list for the presence of the fields 'id', 'status', and 'message'.
  • If a response is missing any of these fields, its 'id' value must be added to the result list.
  • If an incomplete response does not have an 'id' field, add None to the result list for that response.
  • The function must return a list of all such ids (or None), in the same order as the original list.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

What are the key fields that should be present in each API response?

Can you provide an example of the API response format?

How should the function report or handle responses with missing fields?

close

bookChallenge: Data Validator for API Responses

Свайпніть щоб показати меню

In automated QA, data validation is a crucial step to ensure that API responses meet the expected structure and content. As you work with APIs, you will often encounter scenarios where responses are missing required fields, which can lead to test failures or undetected issues in production. Automating the validation of API responses not only saves time but also increases the reliability of your testing process. Your challenge is to implement a function that inspects a batch of API responses (represented as dictionaries) and identifies any responses that are missing key fields. This technique is essential for robust automated QA pipelines and helps you quickly spot incomplete or malformed data.

Завдання

Swipe to start coding

Write a function that checks a list of API response dictionaries for missing required fields.

  • The function must check each dictionary in the responses list for the presence of the fields 'id', 'status', and 'message'.
  • If a response is missing any of these fields, its 'id' value must be added to the result list.
  • If an incomplete response does not have an 'id' field, add None to the result list for that response.
  • The function must return a list of all such ids (or None), in the same order as the original list.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 5
single

single

some-alt