Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Analyze Test Failures with Pandas | Analyzing and Visualizing Test Data
Python for QA Engineers

bookChallenge: Analyze Test Failures with Pandas

In quality assurance, being able to quickly pinpoint failed tests and spot performance issues is critical. When you have a large suite of automated tests, efficiently extracting the IDs of failed tests and determining the average duration of passing tests helps you focus your debugging efforts and optimize your test runs. In this challenge, you will use pandas to analyze a DataFrame of test case results, practicing your ability to filter, aggregate, and extract key metrics that matter most in real-world QA scenarios.

Завдання

Swipe to start coding

Given a pandas DataFrame with test case results, return the IDs of all failed tests and the average duration of all passing tests.

  • Filter the DataFrame to find all rows with a status of "failed" and extract their "id" values as a list.
  • Filter the DataFrame to find all rows with a status of "passed" and calculate the mean of their "duration" values.
  • If there are no passing tests, return None for the average duration.
  • Return a tuple containing the list of failed test IDs and the average duration of passing tests.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

What columns are included in the DataFrame?

Can you provide a sample of the test case results data?

How do I filter for failed tests using pandas?

close

bookChallenge: Analyze Test Failures with Pandas

Свайпніть щоб показати меню

In quality assurance, being able to quickly pinpoint failed tests and spot performance issues is critical. When you have a large suite of automated tests, efficiently extracting the IDs of failed tests and determining the average duration of passing tests helps you focus your debugging efforts and optimize your test runs. In this challenge, you will use pandas to analyze a DataFrame of test case results, practicing your ability to filter, aggregate, and extract key metrics that matter most in real-world QA scenarios.

Завдання

Swipe to start coding

Given a pandas DataFrame with test case results, return the IDs of all failed tests and the average duration of all passing tests.

  • Filter the DataFrame to find all rows with a status of "failed" and extract their "id" values as a list.
  • Filter the DataFrame to find all rows with a status of "passed" and calculate the mean of their "duration" values.
  • If there are no passing tests, return None for the average duration.
  • Return a tuple containing the list of failed test IDs and the average duration of passing tests.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
single

single

some-alt