Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Identify Outlier Test Durations | Analyzing and Visualizing Test Data
Python for QA Engineers

bookChallenge: Identify Outlier Test Durations

Spotting outlier test durations is a vital skill for QA engineers, as it helps you quickly identify problematic tests that may be slowing down your pipeline or masking deeper issues. Outliers among failed tests can signal flaky tests, infrastructure hiccups, or code regressions that deserve immediate attention. In this challenge, you will use a hardcoded pandas DataFrame representing test cases, each with a duration and status, and apply seaborn to visualize the distribution of test durations. Your goal is to highlight any outliers among the failed tests, making it easier to prioritize investigation and continuous improvement of your test suite.

Завдання

Swipe to start coding

Implement a function to plot test durations and highlight outliers among failed tests using seaborn.

  • The function must plot the distribution of test durations for each test status using seaborn.
  • Outliers in the durations, especially among failed tests, must be visually highlighted in the plot.
  • The function must use the provided DataFrame as input.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Can you show me the sample DataFrame structure for the test cases?

How do I use seaborn to visualize outliers among failed tests?

What steps should I follow to highlight outliers in the plot?

close

bookChallenge: Identify Outlier Test Durations

Свайпніть щоб показати меню

Spotting outlier test durations is a vital skill for QA engineers, as it helps you quickly identify problematic tests that may be slowing down your pipeline or masking deeper issues. Outliers among failed tests can signal flaky tests, infrastructure hiccups, or code regressions that deserve immediate attention. In this challenge, you will use a hardcoded pandas DataFrame representing test cases, each with a duration and status, and apply seaborn to visualize the distribution of test durations. Your goal is to highlight any outliers among the failed tests, making it easier to prioritize investigation and continuous improvement of your test suite.

Завдання

Swipe to start coding

Implement a function to plot test durations and highlight outliers among failed tests using seaborn.

  • The function must plot the distribution of test durations for each test status using seaborn.
  • Outliers in the durations, especially among failed tests, must be visually highlighted in the plot.
  • The function must use the provided DataFrame as input.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
single

single

some-alt