Challenge: Evaluating the Model
In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
Next, we'll create a scatterplot for this data:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.
But before you start, recall the PolynomialFeatures class.
fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.
The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.
Swipe to start coding
- Assign the
Xvariable to a DataFrame containing column'age'. - Create an
X_tildematrix using thePolynomialFeaturesclass. - Build and train a Polynomial Regression model.
- Reshape
X_newto be a 2-D array. - Preprocess
X_newthe same way asX. - Print the model's parameters.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Чудово!
Completion показник покращився до 6.67
Challenge: Evaluating the Model
Свайпніть щоб показати меню
In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
Next, we'll create a scatterplot for this data:
12345678import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.
But before you start, recall the PolynomialFeatures class.
fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.
The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.
Swipe to start coding
- Assign the
Xvariable to a DataFrame containing column'age'. - Create an
X_tildematrix using thePolynomialFeaturesclass. - Build and train a Polynomial Regression model.
- Reshape
X_newto be a 2-D array. - Preprocess
X_newthe same way asX. - Print the model's parameters.
Рішення
Дякуємо за ваш відгук!
single