Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Manage an Incorrect Column | Preprocessing Data
Advanced Techniques in pandas

Manage an Incorrect Column

So, you received the result object. This means that the type of the column is non-numerical, but to calculate necessary values, the column need to be numerical. Let's change that.

  1. Firstly, we need to replace - with .. To do so, you will apply the function .str.replace() to replace the character in the string in the dataset column. The syntax is
    data['column_name'].str.replace('old_symbol','new_symbol')
    In our case, old_symbol is -, and . is the new_symbol;
  2. Then, convert the column to the float data type. To do so, use .astype() function. The syntax is data['column_name'].astype('type').
    In our case, the type is 'float'.

Завдання

Your task is to:

  1. Follow the algorithm above and firstly replace - with . in the column 'Fare'.
  2. Convert the column 'Fare' to the 'float' data type.
  3. Output the type of the column 'Fare'.

Все було зрозуміло?

Секція 5. Розділ 8
toggle bottom row
course content

Зміст курсу

Advanced Techniques in pandas

Manage an Incorrect Column

So, you received the result object. This means that the type of the column is non-numerical, but to calculate necessary values, the column need to be numerical. Let's change that.

  1. Firstly, we need to replace - with .. To do so, you will apply the function .str.replace() to replace the character in the string in the dataset column. The syntax is
    data['column_name'].str.replace('old_symbol','new_symbol')
    In our case, old_symbol is -, and . is the new_symbol;
  2. Then, convert the column to the float data type. To do so, use .astype() function. The syntax is data['column_name'].astype('type').
    In our case, the type is 'float'.

Завдання

Your task is to:

  1. Follow the algorithm above and firstly replace - with . in the column 'Fare'.
  2. Convert the column 'Fare' to the 'float' data type.
  3. Output the type of the column 'Fare'.

Все було зрозуміло?

Секція 5. Розділ 8
toggle bottom row
some-alt