Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Introduction to NumPy | NumPy Basics
Ultimate NumPy

Свайпніть щоб показати меню

book
Introduction to NumPy

In order to feel confident and successfully complete this course, we strongly recommend you complete the following courses beforehand (just click on them to start):

In a world full of data, working with matrices and arrays is extremely important. That's where NumPy comes in handy. With its blazing speed and relatively easy-to-use interface, it has become the most used Python library for working with arrays.

Let's now discuss the speed of NumPy and where it comes from. Despite being a Python library, it is mostly written in C, a low-level language that allows for fast computations.

Another contributing factor to NumPy's speed is vectorization. Essentially, vectorization involves transforming an algorithm from operating on a single value at a time to operating on a set of values (vector) at once, which is performed under the hood at the CPU level.

Завдання

Swipe to start coding

To use NumPy, you should first import it, so import numpy using the alias np.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 1

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Introduction to NumPy

In order to feel confident and successfully complete this course, we strongly recommend you complete the following courses beforehand (just click on them to start):

In a world full of data, working with matrices and arrays is extremely important. That's where NumPy comes in handy. With its blazing speed and relatively easy-to-use interface, it has become the most used Python library for working with arrays.

Let's now discuss the speed of NumPy and where it comes from. Despite being a Python library, it is mostly written in C, a low-level language that allows for fast computations.

Another contributing factor to NumPy's speed is vectorization. Essentially, vectorization involves transforming an algorithm from operating on a single value at a time to operating on a set of values (vector) at once, which is performed under the hood at the CPU level.

Завдання

Swipe to start coding

To use NumPy, you should first import it, so import numpy using the alias np.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 1
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt