Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Grouping in Pandas | Pandas
Unveiling the Power of Data Manipulation with Pandas
course content

Зміст курсу

Unveiling the Power of Data Manipulation with Pandas

bookGrouping in Pandas

Grouping in pandas involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.

To group a DataFrame in pandas, use the .groupby() method. This method accepts a column name or a list of column names and returns a groupby object.

Here is an example:

This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.

Завдання

  1. Group the data DataFrame by 'DEPARTMENT_NAME' and compute the mean, minimum, and maximum of the 'MANAGER_ID' column for each group.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Grouping in pandas involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.

To group a DataFrame in pandas, use the .groupby() method. This method accepts a column name or a list of column names and returns a groupby object.

Here is an example:

This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.

Завдання

  1. Group the data DataFrame by 'DEPARTMENT_NAME' and compute the mean, minimum, and maximum of the 'MANAGER_ID' column for each group.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 5
some-alt