Visualizing Returns and Volatility
Understanding how to visualize returns and volatility is essential for any financial analyst aiming to assess risk and make informed investment decisions. By examining the distribution and variability of returns, you gain insight into the likelihood of extreme outcomes—both gains and losses. Visualizations help you identify patterns, spot outliers, and compare the risk profiles of different assets, making them invaluable tools for portfolio construction and risk management.
12345678910111213141516171819202122import pandas as pd import matplotlib.pyplot as plt import numpy as np # Generate a sample DataFrame with dates and simulated adjusted close prices np.random.seed(0) dates = pd.date_range(start="2023-01-01", periods=100) price = 100 + np.cumsum(np.random.normal(0, 1, size=len(dates))) data = pd.DataFrame({"Adj Close": price}, index=dates) # Calculate daily returns data["Return"] = data["Adj Close"].pct_change() # Plot histogram of daily returns plt.figure(figsize=(8, 5)) plt.hist(data["Return"].dropna(), bins=50, color="skyblue", edgecolor="black") plt.title("Histogram of Daily Returns") plt.xlabel("Daily Return") plt.ylabel("Frequency") plt.axvline(data["Return"].mean(), color="red", linestyle="dashed", linewidth=1, label="Mean") plt.legend() plt.show()
A histogram of daily returns displays the frequency of different return values, allowing you to see the overall shape of the return distribution. This makes it easier to spot whether returns are tightly clustered around the mean, widely dispersed, or if there are any significant outliers that could indicate higher risk.
To further analyze volatility, rolling window calculations are often used. These calculations involve taking a fixed-size window—such as 20 days—and computing a statistic like the standard deviation within that window as it moves through the data. This approach reveals how volatility changes over time, highlighting periods of increased or decreased risk and helping you spot trends or sudden shifts in market behavior.
123456789101112131415import pandas as pd import matplotlib.pyplot as plt # Continuing from previous example # Calculate 20-day rolling standard deviation (volatility) of returns data["Rolling Volatility"] = data["Return"].rolling(window=20).std() # Plot rolling volatility plt.figure(figsize=(10, 5)) plt.plot(data.index, data["Rolling Volatility"], color="purple", label="20-Day Rolling Volatility") plt.title("20-Day Rolling Volatility of Daily Returns") plt.xlabel("Date") plt.ylabel("Volatility (Std Dev of Returns)") plt.legend() plt.show()
1. What does a histogram of returns reveal about a stock's risk profile?
2. Why are rolling statistics useful in financial analysis?
3. Which pandas method is used to compute rolling statistics?
Дякуємо за ваш відгук!
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Чудово!
Completion показник покращився до 4.76
Visualizing Returns and Volatility
Свайпніть щоб показати меню
Understanding how to visualize returns and volatility is essential for any financial analyst aiming to assess risk and make informed investment decisions. By examining the distribution and variability of returns, you gain insight into the likelihood of extreme outcomes—both gains and losses. Visualizations help you identify patterns, spot outliers, and compare the risk profiles of different assets, making them invaluable tools for portfolio construction and risk management.
12345678910111213141516171819202122import pandas as pd import matplotlib.pyplot as plt import numpy as np # Generate a sample DataFrame with dates and simulated adjusted close prices np.random.seed(0) dates = pd.date_range(start="2023-01-01", periods=100) price = 100 + np.cumsum(np.random.normal(0, 1, size=len(dates))) data = pd.DataFrame({"Adj Close": price}, index=dates) # Calculate daily returns data["Return"] = data["Adj Close"].pct_change() # Plot histogram of daily returns plt.figure(figsize=(8, 5)) plt.hist(data["Return"].dropna(), bins=50, color="skyblue", edgecolor="black") plt.title("Histogram of Daily Returns") plt.xlabel("Daily Return") plt.ylabel("Frequency") plt.axvline(data["Return"].mean(), color="red", linestyle="dashed", linewidth=1, label="Mean") plt.legend() plt.show()
A histogram of daily returns displays the frequency of different return values, allowing you to see the overall shape of the return distribution. This makes it easier to spot whether returns are tightly clustered around the mean, widely dispersed, or if there are any significant outliers that could indicate higher risk.
To further analyze volatility, rolling window calculations are often used. These calculations involve taking a fixed-size window—such as 20 days—and computing a statistic like the standard deviation within that window as it moves through the data. This approach reveals how volatility changes over time, highlighting periods of increased or decreased risk and helping you spot trends or sudden shifts in market behavior.
123456789101112131415import pandas as pd import matplotlib.pyplot as plt # Continuing from previous example # Calculate 20-day rolling standard deviation (volatility) of returns data["Rolling Volatility"] = data["Return"].rolling(window=20).std() # Plot rolling volatility plt.figure(figsize=(10, 5)) plt.plot(data.index, data["Rolling Volatility"], color="purple", label="20-Day Rolling Volatility") plt.title("20-Day Rolling Volatility of Daily Returns") plt.xlabel("Date") plt.ylabel("Volatility (Std Dev of Returns)") plt.legend() plt.show()
1. What does a histogram of returns reveal about a stock's risk profile?
2. Why are rolling statistics useful in financial analysis?
3. Which pandas method is used to compute rolling statistics?
Дякуємо за ваш відгук!