Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Compute Portfolio VaR | Risk Analysis and Portfolio Optimization
Python for Financial Analysts

bookChallenge: Compute Portfolio VaR

Before you begin working on portfolio risk, it is important to recap what Value at Risk (VaR) represents in finance. VaR is a widely used risk measure that estimates the maximum potential loss of a portfolio over a specific time frame, given a certain probability level. The historical method for calculating VaR uses actual past returns to determine the loss threshold that will not be exceeded with a given confidence level. For example, a 1-day 5% VaR of -2% means that on 95% of days, the portfolio's loss will not be greater than 2%, but on 5% of days, losses could be worse.

12345678910
import numpy as np import pandas as pd # Simulate 2 years of daily portfolio returns (about 504 trading days) np.random.seed(42) returns = np.random.normal(loc=0.0005, scale=0.012, size=504) dates = pd.date_range(start="2022-01-01", periods=504, freq="B") portfolio_returns = pd.DataFrame({"returns": returns}, index=dates) print(portfolio_returns.head())
copy

To calculate multiple VaR thresholds, such as the 1% and 5% daily VaR, you need to determine the appropriate quantiles from the historical returns distribution. Visualizing these VaR levels on a histogram helps you see where the most extreme losses fall relative to the rest of the data. By plotting the returns and marking the VaR thresholds, you can better communicate the risk profile of the portfolio.

Завдання

Swipe to start coding

You are given a DataFrame of daily portfolio returns. Your task is to calculate the 1-day 1% and 5% historical Value at Risk (VaR) for the portfolio, plot the returns distribution with both VaR thresholds, and print an interpretation of the results.

  • Compute the 1-day 1% historical VaR from the returns column of portfolio_returns.
  • Compute the 1-day 5% historical VaR from the returns column of portfolio_returns.
  • Plot a histogram of the daily returns and mark both VaR levels.
  • Print a statement interpreting the meaning of these VaR values for the portfolio's risk.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

How do I calculate the 1% and 5% VaR from the simulated returns?

Can you show me how to plot the returns histogram with VaR thresholds marked?

What does it mean if my portfolio's losses exceed the VaR level?

close

bookChallenge: Compute Portfolio VaR

Свайпніть щоб показати меню

Before you begin working on portfolio risk, it is important to recap what Value at Risk (VaR) represents in finance. VaR is a widely used risk measure that estimates the maximum potential loss of a portfolio over a specific time frame, given a certain probability level. The historical method for calculating VaR uses actual past returns to determine the loss threshold that will not be exceeded with a given confidence level. For example, a 1-day 5% VaR of -2% means that on 95% of days, the portfolio's loss will not be greater than 2%, but on 5% of days, losses could be worse.

12345678910
import numpy as np import pandas as pd # Simulate 2 years of daily portfolio returns (about 504 trading days) np.random.seed(42) returns = np.random.normal(loc=0.0005, scale=0.012, size=504) dates = pd.date_range(start="2022-01-01", periods=504, freq="B") portfolio_returns = pd.DataFrame({"returns": returns}, index=dates) print(portfolio_returns.head())
copy

To calculate multiple VaR thresholds, such as the 1% and 5% daily VaR, you need to determine the appropriate quantiles from the historical returns distribution. Visualizing these VaR levels on a histogram helps you see where the most extreme losses fall relative to the rest of the data. By plotting the returns and marking the VaR thresholds, you can better communicate the risk profile of the portfolio.

Завдання

Swipe to start coding

You are given a DataFrame of daily portfolio returns. Your task is to calculate the 1-day 1% and 5% historical Value at Risk (VaR) for the portfolio, plot the returns distribution with both VaR thresholds, and print an interpretation of the results.

  • Compute the 1-day 1% historical VaR from the returns column of portfolio_returns.
  • Compute the 1-day 5% historical VaR from the returns column of portfolio_returns.
  • Plot a histogram of the daily returns and mark both VaR levels.
  • Print a statement interpreting the meaning of these VaR values for the portfolio's risk.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
single

single

some-alt