Linear Algebra Operations
NumPy
offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:
dot()
: Computes the dot product of two arrays;transpose()
: Transposes an array;inv()
: Computes the inverse of a matrix;linalg.svd()
: Performs the singular value decomposition of a matrix;linalg.eig()
: Determines the eigenvalues and eigenvectors of a matrix.
Завдання
Swipe to start coding
- Compute the dot product of the arrays.
- Transpose the first array.
- Compute the inverse of the second array.
Рішення
Mark tasks as Completed
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 1. Розділ 5
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 14.29
Linear Algebra Operations
NumPy
offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:
dot()
: Computes the dot product of two arrays;transpose()
: Transposes an array;inv()
: Computes the inverse of a matrix;linalg.svd()
: Performs the singular value decomposition of a matrix;linalg.eig()
: Determines the eigenvalues and eigenvectors of a matrix.
Завдання
Swipe to start coding
- Compute the dot product of the arrays.
- Transpose the first array.
- Compute the inverse of the second array.
Рішення
Mark tasks as Completed
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 1. Розділ 5