Challenge: Apply the Estimator API
Swipe to start coding
You are working with the scikit-learn Estimator API, which follows a consistent pattern across models.
Your goal is to apply the Estimator workflow by fitting a model and generating predictions using the standard fit and predict methods.
- Create a
LogisticRegressionestimator withrandom_state=42. - Fit the estimator using the provided training data:
X_train;y_train.
- Use the fitted estimator to generate predictions for
X_test. - Store the predictions in the variable
y_pred.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Can you explain this in simpler terms?
What are the main benefits or drawbacks?
Can you give me a real-world example?
Чудово!
Completion показник покращився до 5.26
Challenge: Apply the Estimator API
Свайпніть щоб показати меню
Swipe to start coding
You are working with the scikit-learn Estimator API, which follows a consistent pattern across models.
Your goal is to apply the Estimator workflow by fitting a model and generating predictions using the standard fit and predict methods.
- Create a
LogisticRegressionestimator withrandom_state=42. - Fit the estimator using the provided training data:
X_train;y_train.
- Use the fitted estimator to generate predictions for
X_test. - Store the predictions in the variable
y_pred.
Рішення
Дякуємо за ваш відгук!
single