Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: SVD for Image Compression | Linear Algebra and Matrix Operations
Introduction to SciPy

bookChallenge: SVD for Image Compression

Building on your understanding of matrix operations and singular value decomposition (SVD), you are ready to apply these concepts to a practical scenario: image compression. SVD is a powerful tool for reducing the dimensionality of data, and it is widely used in image processing to compress images while retaining as much of the original information as possible. In this challenge, you will use scipy.linalg.svd to compress a grayscale image matrix by truncating its singular values, then reconstruct the image from the reduced data. This approach demonstrates how SVD can balance image quality and storage efficiency.

Завдання

Swipe to start coding

Implement a function that compresses a grayscale image matrix using singular value decomposition (SVD). The function should:

  • Take a 2D NumPy array representing a grayscale image and an integer k as input.
  • Decompose the image matrix using scipy.linalg.svd.
  • Truncate the decomposition to keep only the top k singular values and corresponding vectors.
  • Reconstruct and return the compressed image matrix using the reduced components.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 6
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

Awesome!

Completion rate improved to 4.17

bookChallenge: SVD for Image Compression

Свайпніть щоб показати меню

Building on your understanding of matrix operations and singular value decomposition (SVD), you are ready to apply these concepts to a practical scenario: image compression. SVD is a powerful tool for reducing the dimensionality of data, and it is widely used in image processing to compress images while retaining as much of the original information as possible. In this challenge, you will use scipy.linalg.svd to compress a grayscale image matrix by truncating its singular values, then reconstruct the image from the reduced data. This approach demonstrates how SVD can balance image quality and storage efficiency.

Завдання

Swipe to start coding

Implement a function that compresses a grayscale image matrix using singular value decomposition (SVD). The function should:

  • Take a 2D NumPy array representing a grayscale image and an integer k as input.
  • Decompose the image matrix using scipy.linalg.svd.
  • Truncate the decomposition to keep only the top k singular values and corresponding vectors.
  • Reconstruct and return the compressed image matrix using the reduced components.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 6
single

single

some-alt