Challenge: Data Fitting in Practice
Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.
Swipe to start coding
Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).
- Use
curve_fitto fitpoly_modelto the providedx_dataandy_data. - Retrieve the fitted parameters from the result of
curve_fit. - Return the parameters as a tuple
(a, b, c).
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 4.17
Challenge: Data Fitting in Practice
Свайпніть щоб показати меню
Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.
Swipe to start coding
Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).
- Use
curve_fitto fitpoly_modelto the providedx_dataandy_data. - Retrieve the fitted parameters from the result of
curve_fit. - Return the parameters as a tuple
(a, b, c).
Рішення
Дякуємо за ваш відгук!
single