Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Clean Transaction Data | Financial Data Analysis for Bankers
Python for Bankers

bookChallenge: Clean Transaction Data

In banking, transaction data often arrives with missing values and duplicate records, which can hinder accurate analysis and reporting. As you work with financial DataFrames, it's crucial to ensure that the data is clean, consistent, and ready for downstream processing. Your task is to take a DataFrame containing transaction records, some of which have missing amounts and duplicate entries, and prepare it for further use by addressing these common data quality issues.

Завдання

Swipe to start coding

Given a DataFrame containing transaction records, some with missing amounts and duplicate entries, your goal is to clean the data for further analysis.

  • Fill all missing values in the Amount column with zero.
  • Remove any duplicate rows from the DataFrame.
  • Ensure all values in the Amount column are of type float.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 7
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

How can I handle missing values in the transaction amounts?

What is the best way to remove duplicate records from the DataFrame?

Can you show me an example of cleaning a sample transaction DataFrame?

close

bookChallenge: Clean Transaction Data

Свайпніть щоб показати меню

In banking, transaction data often arrives with missing values and duplicate records, which can hinder accurate analysis and reporting. As you work with financial DataFrames, it's crucial to ensure that the data is clean, consistent, and ready for downstream processing. Your task is to take a DataFrame containing transaction records, some of which have missing amounts and duplicate entries, and prepare it for further use by addressing these common data quality issues.

Завдання

Swipe to start coding

Given a DataFrame containing transaction records, some with missing amounts and duplicate entries, your goal is to clean the data for further analysis.

  • Fill all missing values in the Amount column with zero.
  • Remove any duplicate rows from the DataFrame.
  • Ensure all values in the Amount column are of type float.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 7
single

single

some-alt