Challenge: Grid Search
Завдання
Swipe to start coding
In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.
You'll use a noisy two-class dataset generated with make_moons.
Your task is to:
- Define the parameter grid
param_grid:'n_estimators':[50, 100, 200]'max_depth':[3, 5, None]'min_samples_split':[2, 4]
- Create a
GridSearchCVobject using:- The model:
RandomForestClassifier(random_state=42) - The defined grid
param_grid cv=5cross-validation folds'accuracy'as the scoring metric
- The model:
- Fit the search object on the training data and print:
grid_search.best_params_- The test accuracy of the best model.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 4
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Suggested prompts:
Can you explain this in simpler terms?
What are the main takeaways from this?
Can you give me an example?
Awesome!
Completion rate improved to 9.09
Challenge: Grid Search
Свайпніть щоб показати меню
Завдання
Swipe to start coding
In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.
You'll use a noisy two-class dataset generated with make_moons.
Your task is to:
- Define the parameter grid
param_grid:'n_estimators':[50, 100, 200]'max_depth':[3, 5, None]'min_samples_split':[2, 4]
- Create a
GridSearchCVobject using:- The model:
RandomForestClassifier(random_state=42) - The defined grid
param_grid cv=5cross-validation folds'accuracy'as the scoring metric
- The model:
- Fit the search object on the training data and print:
grid_search.best_params_- The test accuracy of the best model.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 4
single