Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте First Look at the Data | Visualizing Data
Analyzing and Visualizing Real-World Data

Свайпніть щоб показати меню

book
First Look at the Data

Welcome to the last section! In the previous section, we investigated that the most profitable week, according to sales data, is the 'pre-Christmas' week, while Christmas week itself is significantly worse.

We want to start with some exploratory analysis: let's see revenues over weeks using matplotlib and seaborn.

Завдання

Swipe to start coding

  1. Import the matplotlib.pyplot with the alias plt, and seaborn with the alias sns.
  2. Prepare data for visualization: calculate the total revenue for all shops across weeks. To do it, group the values of the df dataframe by the 'Date' column, select the 'Weekly_Sales' column, calculate total values, and reset indexes. Save the obtained data within the data variable.
  3. Initialize a line plot with the 'Date' values on the x-axis, 'Weekly_Sales' values on the y-axis, using the data dataframe.
  4. Display the plot.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
First Look at the Data

Welcome to the last section! In the previous section, we investigated that the most profitable week, according to sales data, is the 'pre-Christmas' week, while Christmas week itself is significantly worse.

We want to start with some exploratory analysis: let's see revenues over weeks using matplotlib and seaborn.

Завдання

Swipe to start coding

  1. Import the matplotlib.pyplot with the alias plt, and seaborn with the alias sns.
  2. Prepare data for visualization: calculate the total revenue for all shops across weeks. To do it, group the values of the df dataframe by the 'Date' column, select the 'Weekly_Sales' column, calculate total values, and reset indexes. Save the obtained data within the data variable.
  3. Initialize a line plot with the 'Date' values on the x-axis, 'Weekly_Sales' values on the y-axis, using the data dataframe.
  4. Display the plot.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt