Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Group Data 2.0 | Explore Dataset
Introduction to Python for Data Analysis
course content

Зміст курсу

Introduction to Python for Data Analysis

Introduction to Python for Data Analysis

1. Introduction to Python 1/2
2. Introduction to Python 2/2
3. Explore Dataset
4. Becoming an Analyst

bookGroup Data 2.0

Let's imagine the situation where you want to group by job_title, but then you want to group by experience_level , for example.

Here, everything is so simple you need just put several columns in needed order to groupby function:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df.groupby(['job_title', 'experience_level']).mean() print(df)
copy

Look at the output.

output

By the way, if you don't want to group the whole table, you can specify the name of columns for which we should apply grouping. For instance, look at the previous code. If we want to calculate the mean value only for the 'salary' column, we specify needed columns, but do not forget about columns that should be grouped:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df[['salary','job_title', 'experience_level']].groupby(['job_title', 'experience_level']).mean() print(df)
copy

Be careful; if you want to work with several columns, you have to put them into [[]] (look at the example).

Look at the result:

result

Завдання

Your task here is to work with the known dataset and count amount of users for each plan depending on the status of their trial. To do it, follow the algorithm:

  1. Group by 'plan' column, then by 'trial' column, using only three columns: 'user_id', 'plan', 'trial'. Apply the count() function.
  2. Print the df using only print() function.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 9
toggle bottom row

bookGroup Data 2.0

Let's imagine the situation where you want to group by job_title, but then you want to group by experience_level , for example.

Here, everything is so simple you need just put several columns in needed order to groupby function:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df.groupby(['job_title', 'experience_level']).mean() print(df)
copy

Look at the output.

output

By the way, if you don't want to group the whole table, you can specify the name of columns for which we should apply grouping. For instance, look at the previous code. If we want to calculate the mean value only for the 'salary' column, we specify needed columns, but do not forget about columns that should be grouped:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df[['salary','job_title', 'experience_level']].groupby(['job_title', 'experience_level']).mean() print(df)
copy

Be careful; if you want to work with several columns, you have to put them into [[]] (look at the example).

Look at the result:

result

Завдання

Your task here is to work with the known dataset and count amount of users for each plan depending on the status of their trial. To do it, follow the algorithm:

  1. Group by 'plan' column, then by 'trial' column, using only three columns: 'user_id', 'plan', 'trial'. Apply the count() function.
  2. Print the df using only print() function.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 9
toggle bottom row

bookGroup Data 2.0

Let's imagine the situation where you want to group by job_title, but then you want to group by experience_level , for example.

Here, everything is so simple you need just put several columns in needed order to groupby function:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df.groupby(['job_title', 'experience_level']).mean() print(df)
copy

Look at the output.

output

By the way, if you don't want to group the whole table, you can specify the name of columns for which we should apply grouping. For instance, look at the previous code. If we want to calculate the mean value only for the 'salary' column, we specify needed columns, but do not forget about columns that should be grouped:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df[['salary','job_title', 'experience_level']].groupby(['job_title', 'experience_level']).mean() print(df)
copy

Be careful; if you want to work with several columns, you have to put them into [[]] (look at the example).

Look at the result:

result

Завдання

Your task here is to work with the known dataset and count amount of users for each plan depending on the status of their trial. To do it, follow the algorithm:

  1. Group by 'plan' column, then by 'trial' column, using only three columns: 'user_id', 'plan', 'trial'. Apply the count() function.
  2. Print the df using only print() function.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Let's imagine the situation where you want to group by job_title, but then you want to group by experience_level , for example.

Here, everything is so simple you need just put several columns in needed order to groupby function:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df.groupby(['job_title', 'experience_level']).mean() print(df)
copy

Look at the output.

output

By the way, if you don't want to group the whole table, you can specify the name of columns for which we should apply grouping. For instance, look at the previous code. If we want to calculate the mean value only for the 'salary' column, we specify needed columns, but do not forget about columns that should be grouped:

1234567
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/INTRO+to+Python/ds_salaries.csv', index_col = 0) df = df[['salary','job_title', 'experience_level']].groupby(['job_title', 'experience_level']).mean() print(df)
copy

Be careful; if you want to work with several columns, you have to put them into [[]] (look at the example).

Look at the result:

result

Завдання

Your task here is to work with the known dataset and count amount of users for each plan depending on the status of their trial. To do it, follow the algorithm:

  1. Group by 'plan' column, then by 'trial' column, using only three columns: 'user_id', 'plan', 'trial'. Apply the count() function.
  2. Print the df using only print() function.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 3. Розділ 9
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt