Dive Deeper into Visualization
Let's imagine that it is essential for you to sort out the user continued subscription after the trial period. Let's move to the dataset that we use, for example:
Look at the code:
99
1
2
3
4
5
6
7
8
9
10
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv', index_col = 0)
df = df.groupby(['plan', 'trial']).sum().reset_index()
sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial')
plt.show()
12345678910import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv', index_col = 0) df = df.groupby(['plan', 'trial']).sum().reset_index() sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial') plt.show()
As you can see, we just add the hue
parameter, which helps you sort out data by categories. For instance, here, hue = 'trial'
, the column 'trial'
has two categories: True
and False
.
And here is the output:
Завдання
Swipe to start coding
Visualize the sum of money you receive from users depending on their subscription plan. Take into account if the user continued the subscription after the trial period.
- Import the
seaborn
with thesns
alias. - Import the
matplotlib.pyplot
with theplt
alias. - Prepare data for visualization using the
.groupby()
function:
- Extract columns
'plan', 'price', 'trial'
for grouping - Group by column
'plan'
and then by'trial'
. - Calculate the
sum
of all prices for eachplan
. - Reset indices.
- Create the
barplot
using theseaborn
:
- Use
df
as the data argument. - Use the
'plan'
column for x-axis. - Use the
'price'
column for y-axis. - Use the
'trial'
column for hue variable.
- Display the plot.
Рішення
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import pandas as pd
# Import the seaborn
import seaborn as sns
# Import the matplotlib
import matplotlib.pyplot as plt
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv')
# Prepare the data for visualization
df = df[['plan', 'price', 'trial']].groupby(['plan', 'trial']).sum().reset_index()
# Create the barplot
sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial')
# Display the plot
plt.show()
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 3. Розділ 17
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import pandas as pd
# Import the seaborn
___
# Import the matplotlib
___
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv')
# Prepare the data for visualization
df = ___[[___]].___(['plan', ___]).sum().___
# Create the barplot
___(data = ___, x = ___, y = ___, hue = ___)
# Display the plot
plt.___
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат