Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Dive Deeper into Visualization | Explore Dataset
Introduction to Python for Data Analysis

book
Dive Deeper into Visualization

Let's imagine that it is essential for you to sort out the user continued subscription after the trial period. Let's move to the dataset that we use, for example:

Look at the code:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv', index_col = 0)

df = df.groupby(['plan', 'trial']).sum().reset_index()

sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial')
plt.show()
12345678910
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv', index_col = 0) df = df.groupby(['plan', 'trial']).sum().reset_index() sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial') plt.show()
copy

As you can see, we just add the hue parameter, which helps you sort out data by categories. For instance, here, hue = 'trial', the column 'trial' has two categories: True and False.

And here is the output:

barplot

Завдання

Swipe to start coding

Visualize the sum of money you receive from users depending on their subscription plan. Take into account if the user continued the subscription after the trial period.

  1. Import the seaborn with the sns alias.
  2. Import the matplotlib.pyplot with the plt alias.
  3. Prepare data for visualization using the .groupby() function:
  • Extract columns 'plan', 'price', 'trial' for grouping
  • Group by column 'plan' and then by 'trial'.
  • Calculate the sum of all prices for each plan.
  • Reset indices.
  1. Create the barplot using the seaborn:
  • Use df as the data argument.
  • Use the 'plan' column for x-axis.
  • Use the 'price' column for y-axis.
  • Use the 'trial' column for hue variable.
  1. Display the plot.

Рішення

import pandas as pd
# Import the seaborn
import seaborn as sns
# Import the matplotlib
import matplotlib.pyplot as plt

df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv')

# Prepare the data for visualization
df = df[['plan', 'price', 'trial']].groupby(['plan', 'trial']).sum().reset_index()
# Create the barplot
sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial')

# Display the plot
plt.show()

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 17
import pandas as pd
# Import the seaborn
___
# Import the matplotlib
___

df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv')

# Prepare the data for visualization
df = ___[[___]].___(['plan', ___]).sum().___
# Create the barplot
___(data = ___, x = ___, y = ___, hue = ___)

# Display the plot
plt.___

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

some-alt