Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Regularization and Optimization Strategies | Transfer Learning in Computer Vision
Transfer Learning Essentials

bookRegularization and Optimization Strategies

Regularization and Optimization in Transfer Learning

When adapting pre-trained models, regularization and optimization strategies help prevent overfitting and improve generalization:

  • Dropout: randomly drops units during training to prevent co-adaptation;
  • Batch normalization: normalizes activations to stabilize and speed up training;
  • Data augmentation: expands the training set by applying random transformations (flip, rotate, zoom, etc.);
  • Differential learning rates: use lower learning rates for pre-trained layers and higher for new layers.
Note
Note

Data augmentation is especially important when your target dataset is small.

12345678910111213141516171819202122232425
# Example: Adding regularization and data augmentation from tensorflow.keras import layers, models from tensorflow.keras.preprocessing.image import ImageDataGenerator # Data augmentation pipeline train_datagen = ImageDataGenerator( rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, zoom_range=0.2 ) # Build model with dropout and batch normalization model = models.Sequential([ VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)), layers.Flatten(), layers.Dense(256, activation='relu'), layers.BatchNormalization(), layers.Dropout(0.5), layers.Dense(10, activation='softmax') ]) # Compile model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
copy
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Data augmentation pipeline
train_datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True,
    zoom_range=0.2
)

This block defines a data generator that applies random transformations to training images. Instead of manually creating more images, it produces slightly altered versions in real time during training, which helps the model become more robust.

  • rotation_range=20 rotates each image by up to 20 degrees in any direction.
  • width_shift_range=0.2 and height_shift_range=0.2 move images horizontally or vertically by up to 20% of their width or height.
  • horizontal_flip=True mirrors images horizontally, useful when objects can appear facing either direction.
  • zoom_range=0.2 randomly zooms in or out by up to 20%.

The augmented images are generated on the fly every epoch, so the model sees slightly different inputs each time, improving generalization and reducing overfitting.

# Build model with dropout and batch normalization
model = models.Sequential([
    VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)),
    layers.Flatten(),
    layers.Dense(256, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')
])

The model combines a pre-trained VGG16 feature extractor with new dense layers for classification. BatchNormalization() stabilizes activations, while Dropout() randomly disables neurons during training to prevent overfitting.

# Compile model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

The model is compiled using the Adam optimizer and categorical cross-entropy loss, suitable for multi-class classification tasks.

question mark

Which of the following statements about regularization and optimization strategies in transfer learning are correct?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Awesome!

Completion rate improved to 9.09

bookRegularization and Optimization Strategies

Свайпніть щоб показати меню

Regularization and Optimization in Transfer Learning

When adapting pre-trained models, regularization and optimization strategies help prevent overfitting and improve generalization:

  • Dropout: randomly drops units during training to prevent co-adaptation;
  • Batch normalization: normalizes activations to stabilize and speed up training;
  • Data augmentation: expands the training set by applying random transformations (flip, rotate, zoom, etc.);
  • Differential learning rates: use lower learning rates for pre-trained layers and higher for new layers.
Note
Note

Data augmentation is especially important when your target dataset is small.

12345678910111213141516171819202122232425
# Example: Adding regularization and data augmentation from tensorflow.keras import layers, models from tensorflow.keras.preprocessing.image import ImageDataGenerator # Data augmentation pipeline train_datagen = ImageDataGenerator( rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, zoom_range=0.2 ) # Build model with dropout and batch normalization model = models.Sequential([ VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)), layers.Flatten(), layers.Dense(256, activation='relu'), layers.BatchNormalization(), layers.Dropout(0.5), layers.Dense(10, activation='softmax') ]) # Compile model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
copy
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Data augmentation pipeline
train_datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True,
    zoom_range=0.2
)

This block defines a data generator that applies random transformations to training images. Instead of manually creating more images, it produces slightly altered versions in real time during training, which helps the model become more robust.

  • rotation_range=20 rotates each image by up to 20 degrees in any direction.
  • width_shift_range=0.2 and height_shift_range=0.2 move images horizontally or vertically by up to 20% of their width or height.
  • horizontal_flip=True mirrors images horizontally, useful when objects can appear facing either direction.
  • zoom_range=0.2 randomly zooms in or out by up to 20%.

The augmented images are generated on the fly every epoch, so the model sees slightly different inputs each time, improving generalization and reducing overfitting.

# Build model with dropout and batch normalization
model = models.Sequential([
    VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)),
    layers.Flatten(),
    layers.Dense(256, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')
])

The model combines a pre-trained VGG16 feature extractor with new dense layers for classification. BatchNormalization() stabilizes activations, while Dropout() randomly disables neurons during training to prevent overfitting.

# Compile model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

The model is compiled using the Adam optimizer and categorical cross-entropy loss, suitable for multi-class classification tasks.

question mark

Which of the following statements about regularization and optimization strategies in transfer learning are correct?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
some-alt