Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Зниження рівня шуму | Аналіз результатів
Метод Головних Компонент
course content

Зміст курсу

Метод Головних Компонент

Метод Головних Компонент

1. Що таке аналіз головних компонент
2. Основні поняття РСА
3. Побудова моделі
4. Аналіз результатів

book
Зниження рівня шуму

Let's look at the way PCA works, when the algorithm does not act as a data processing stage, but as the main stage. The task of noise reduction in images is just that case. The pipeline in this case looks like this: we load the noisy data into the model, after which we can process other data using PCA and the model will restore that data. How it works? By reducing the number of main components - literally only the most important elements of the image remain, i.e. noise will be reduced. We use the USPS dataset with numbers and the scikit-learn library:

python

Let's add some noise to our images:

python

Create a PCA model:

python

Let's see what came of it! Initial noisy images:

And here is the result of PCA work:

question mark

Is the PCA method designed to reduce noise in the data?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 4
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt