Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 3: Hypothesis Testing | Statistics
Data Science Interview Challenge
course content

Зміст курсу

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

bookChallenge 3: Hypothesis Testing

The fascinating realm of statistics houses the intricate process of hypothesis testing. At its core, hypothesis testing is about making inferences regarding populations based on sample data. We formulate hypotheses and test them, drawing conclusions about broader datasets by analyzing a subset.

For instance, if you're studying the impact of a new teaching method in a classroom and observe a significant improvement in students' grades, can you conclusively say that the method is effective? The answer lies in hypothesis testing.


Here's the dataset we'll be using in this chapter. Feel free to dive in and explore it before tackling the task.

123456789101112131415161718
import matplotlib.pyplot as plt import seaborn as sns # Load the dataset data = sns.load_dataset('tips') # Sample of data display(data.head()) # Total bill amounts grouped by smoking status sns.boxplot(x='smoker', y='total_bill', data=data) plt.title('Total Bill Amounts Grouped by Smoking Status') plt.show() # Number of smokers vs. non-smokers by gender sns.countplot(x='sex', hue='smoker', data=data) plt.title('Number of Smokers vs. Non-Smokers by Gender') plt.show()
copy

Завдання

In this exercise, leveraging the Seaborn's tips dataset, you'll:

  1. Test if there's a significant difference in the total_bill amounts between smokers and non-smokers. Use Mann–Whitney U test.
  2. Examine the relationship between the sex and smoker columns, determining if these two categorical variables are independent of each other.

Note

In this task, the significance level (alpha) for the p-value is set at 0.1, rather than the conventional 0.05. The choice of alpha can vary across tasks based on the context, the level of rigor required, or specific industry practices; commonly adopted values include 0.01, 0.05, and 0.1.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 3
toggle bottom row

bookChallenge 3: Hypothesis Testing

The fascinating realm of statistics houses the intricate process of hypothesis testing. At its core, hypothesis testing is about making inferences regarding populations based on sample data. We formulate hypotheses and test them, drawing conclusions about broader datasets by analyzing a subset.

For instance, if you're studying the impact of a new teaching method in a classroom and observe a significant improvement in students' grades, can you conclusively say that the method is effective? The answer lies in hypothesis testing.


Here's the dataset we'll be using in this chapter. Feel free to dive in and explore it before tackling the task.

123456789101112131415161718
import matplotlib.pyplot as plt import seaborn as sns # Load the dataset data = sns.load_dataset('tips') # Sample of data display(data.head()) # Total bill amounts grouped by smoking status sns.boxplot(x='smoker', y='total_bill', data=data) plt.title('Total Bill Amounts Grouped by Smoking Status') plt.show() # Number of smokers vs. non-smokers by gender sns.countplot(x='sex', hue='smoker', data=data) plt.title('Number of Smokers vs. Non-Smokers by Gender') plt.show()
copy

Завдання

In this exercise, leveraging the Seaborn's tips dataset, you'll:

  1. Test if there's a significant difference in the total_bill amounts between smokers and non-smokers. Use Mann–Whitney U test.
  2. Examine the relationship between the sex and smoker columns, determining if these two categorical variables are independent of each other.

Note

In this task, the significance level (alpha) for the p-value is set at 0.1, rather than the conventional 0.05. The choice of alpha can vary across tasks based on the context, the level of rigor required, or specific industry practices; commonly adopted values include 0.01, 0.05, and 0.1.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 3
toggle bottom row

bookChallenge 3: Hypothesis Testing

The fascinating realm of statistics houses the intricate process of hypothesis testing. At its core, hypothesis testing is about making inferences regarding populations based on sample data. We formulate hypotheses and test them, drawing conclusions about broader datasets by analyzing a subset.

For instance, if you're studying the impact of a new teaching method in a classroom and observe a significant improvement in students' grades, can you conclusively say that the method is effective? The answer lies in hypothesis testing.


Here's the dataset we'll be using in this chapter. Feel free to dive in and explore it before tackling the task.

123456789101112131415161718
import matplotlib.pyplot as plt import seaborn as sns # Load the dataset data = sns.load_dataset('tips') # Sample of data display(data.head()) # Total bill amounts grouped by smoking status sns.boxplot(x='smoker', y='total_bill', data=data) plt.title('Total Bill Amounts Grouped by Smoking Status') plt.show() # Number of smokers vs. non-smokers by gender sns.countplot(x='sex', hue='smoker', data=data) plt.title('Number of Smokers vs. Non-Smokers by Gender') plt.show()
copy

Завдання

In this exercise, leveraging the Seaborn's tips dataset, you'll:

  1. Test if there's a significant difference in the total_bill amounts between smokers and non-smokers. Use Mann–Whitney U test.
  2. Examine the relationship between the sex and smoker columns, determining if these two categorical variables are independent of each other.

Note

In this task, the significance level (alpha) for the p-value is set at 0.1, rather than the conventional 0.05. The choice of alpha can vary across tasks based on the context, the level of rigor required, or specific industry practices; commonly adopted values include 0.01, 0.05, and 0.1.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

The fascinating realm of statistics houses the intricate process of hypothesis testing. At its core, hypothesis testing is about making inferences regarding populations based on sample data. We formulate hypotheses and test them, drawing conclusions about broader datasets by analyzing a subset.

For instance, if you're studying the impact of a new teaching method in a classroom and observe a significant improvement in students' grades, can you conclusively say that the method is effective? The answer lies in hypothesis testing.


Here's the dataset we'll be using in this chapter. Feel free to dive in and explore it before tackling the task.

123456789101112131415161718
import matplotlib.pyplot as plt import seaborn as sns # Load the dataset data = sns.load_dataset('tips') # Sample of data display(data.head()) # Total bill amounts grouped by smoking status sns.boxplot(x='smoker', y='total_bill', data=data) plt.title('Total Bill Amounts Grouped by Smoking Status') plt.show() # Number of smokers vs. non-smokers by gender sns.countplot(x='sex', hue='smoker', data=data) plt.title('Number of Smokers vs. Non-Smokers by Gender') plt.show()
copy

Завдання

In this exercise, leveraging the Seaborn's tips dataset, you'll:

  1. Test if there's a significant difference in the total_bill amounts between smokers and non-smokers. Use Mann–Whitney U test.
  2. Examine the relationship between the sex and smoker columns, determining if these two categorical variables are independent of each other.

Note

In this task, the significance level (alpha) for the p-value is set at 0.1, rather than the conventional 0.05. The choice of alpha can vary across tasks based on the context, the level of rigor required, or specific industry practices; commonly adopted values include 0.01, 0.05, and 0.1.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 6. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt