Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge 2: Bayes' Theorem | Statistics
Data Science Interview Challenge

Свайпніть щоб показати меню

book
Challenge 2: Bayes' Theorem

In the world of probability and statistics, Bayesian thinking offers a framework for understanding the probability of an event based on prior knowledge. It contrasts with the frequentist approach, which determines probabilities based on the long-run frequencies of events. Bayes' theorem is a fundamental tool within this Bayesian framework, connecting prior probabilities and observed data.

Завдання

Swipe to start coding

Imagine you are a data scientist working for a medical diagnostics company. Your company has developed a new test for a rare disease. The prevalence of this disease in the general population is 1%. The test has a 99% true positive rate (sensitivity) and a 98% true negative rate (specificity).

Your task is to compute the probability that a person who tests positive actually has the disease.

Given:

  • P(Disease) = Probability of having the disease = 0.01
  • P(Positive|Disease) = Probability of testing positive given that you have the disease = 0.99
  • P(Negative|No\ Disease) = Probability of testing negative given that you don't have the disease = 0.98

Using Bayes' theorem:

P(Disease|Positive) = P(Positive|Disease) * P(Disease) / P(Positive)

Where P(Positive) can be found using the law of total probability:

P(Positive) = P(Positive|Disease) * P(Disease) + P(Positive|No Disease) * P(No Disease)

Compute P(Disease|Positive), the probability that a person who tests positive actually has the disease.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 2
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

Awesome!

Completion rate improved to 2.33

book
Challenge 2: Bayes' Theorem

In the world of probability and statistics, Bayesian thinking offers a framework for understanding the probability of an event based on prior knowledge. It contrasts with the frequentist approach, which determines probabilities based on the long-run frequencies of events. Bayes' theorem is a fundamental tool within this Bayesian framework, connecting prior probabilities and observed data.

Завдання

Swipe to start coding

Imagine you are a data scientist working for a medical diagnostics company. Your company has developed a new test for a rare disease. The prevalence of this disease in the general population is 1%. The test has a 99% true positive rate (sensitivity) and a 98% true negative rate (specificity).

Your task is to compute the probability that a person who tests positive actually has the disease.

Given:

  • P(Disease) = Probability of having the disease = 0.01
  • P(Positive|Disease) = Probability of testing positive given that you have the disease = 0.99
  • P(Negative|No\ Disease) = Probability of testing negative given that you don't have the disease = 0.98

Using Bayes' theorem:

P(Disease|Positive) = P(Positive|Disease) * P(Disease) / P(Positive)

Where P(Positive) can be found using the law of total probability:

P(Positive) = P(Positive|Disease) * P(Disease) + P(Positive|No Disease) * P(No Disease)

Compute P(Disease|Positive), the probability that a person who tests positive actually has the disease.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

close

Awesome!

Completion rate improved to 2.33

Свайпніть щоб показати меню

some-alt