Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 2: Array Manipulation | NumPy
Data Science Interview Challenge
course content

Зміст курсу

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

bookChallenge 2: Array Manipulation

NumPy offers a comprehensive set of tools for modifying and reshaping arrays. The key benefits include:

  • Diverse Capabilities: From reshaping to splitting, NumPy offers a wide range of functions to modify arrays as per requirements.
  • In-place Operations: Many NumPy functions can perform modifications in-place, meaning without creating a copy of the array, ensuring efficient memory usage.
  • Intuitive Syntax: Array manipulations often have a very readable and straightforward syntax, making the code self-explanatory.

The ability to seamlessly manipulate arrays is a cornerstone of many numerical and data science tasks, making these functions indispensable.

Завдання
test

Swipe to show code editor

Manipulate arrays to change their shape and get desired elements.

  1. Extract the diagonal elements.
  2. Retrieve the elements in the second row.
  3. Extract the 2nd and 3rd rows and change their shape to (5, 2).

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookChallenge 2: Array Manipulation

NumPy offers a comprehensive set of tools for modifying and reshaping arrays. The key benefits include:

  • Diverse Capabilities: From reshaping to splitting, NumPy offers a wide range of functions to modify arrays as per requirements.
  • In-place Operations: Many NumPy functions can perform modifications in-place, meaning without creating a copy of the array, ensuring efficient memory usage.
  • Intuitive Syntax: Array manipulations often have a very readable and straightforward syntax, making the code self-explanatory.

The ability to seamlessly manipulate arrays is a cornerstone of many numerical and data science tasks, making these functions indispensable.

Завдання
test

Swipe to show code editor

Manipulate arrays to change their shape and get desired elements.

  1. Extract the diagonal elements.
  2. Retrieve the elements in the second row.
  3. Extract the 2nd and 3rd rows and change their shape to (5, 2).

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookChallenge 2: Array Manipulation

NumPy offers a comprehensive set of tools for modifying and reshaping arrays. The key benefits include:

  • Diverse Capabilities: From reshaping to splitting, NumPy offers a wide range of functions to modify arrays as per requirements.
  • In-place Operations: Many NumPy functions can perform modifications in-place, meaning without creating a copy of the array, ensuring efficient memory usage.
  • Intuitive Syntax: Array manipulations often have a very readable and straightforward syntax, making the code self-explanatory.

The ability to seamlessly manipulate arrays is a cornerstone of many numerical and data science tasks, making these functions indispensable.

Завдання
test

Swipe to show code editor

Manipulate arrays to change their shape and get desired elements.

  1. Extract the diagonal elements.
  2. Retrieve the elements in the second row.
  3. Extract the 2nd and 3rd rows and change their shape to (5, 2).

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

NumPy offers a comprehensive set of tools for modifying and reshaping arrays. The key benefits include:

  • Diverse Capabilities: From reshaping to splitting, NumPy offers a wide range of functions to modify arrays as per requirements.
  • In-place Operations: Many NumPy functions can perform modifications in-place, meaning without creating a copy of the array, ensuring efficient memory usage.
  • Intuitive Syntax: Array manipulations often have a very readable and straightforward syntax, making the code self-explanatory.

The ability to seamlessly manipulate arrays is a cornerstone of many numerical and data science tasks, making these functions indispensable.

Завдання
test

Swipe to show code editor

Manipulate arrays to change their shape and get desired elements.

  1. Extract the diagonal elements.
  2. Retrieve the elements in the second row.
  3. Extract the 2nd and 3rd rows and change their shape to (5, 2).

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 2
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt