Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 3: Relational Plots | Seaborn
Data Science Interview Challenge
course content

Зміст курсу

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

bookChallenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Завдання

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 3
toggle bottom row

bookChallenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Завдання

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 3
toggle bottom row

bookChallenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Завдання

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Завдання

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 5. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt