Challenge: Solving Task Using Bagging Classifier
Swipe to start coding
The load_breast_cancer
dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).
Your task is to solve the classification problem using BaggingClassifier
on load_breast_cancer
dataset:
- Create an instance of
BaggingClassifier
class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to10
. - Fit the ensemble model.
- Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 4.55
Challenge: Solving Task Using Bagging Classifier
Свайпніть щоб показати меню
Swipe to start coding
The load_breast_cancer
dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).
Your task is to solve the classification problem using BaggingClassifier
on load_breast_cancer
dataset:
- Create an instance of
BaggingClassifier
class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to10
. - Fit the ensemble model.
- Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.
Рішення
Дякуємо за ваш відгук!
Awesome!
Completion rate improved to 4.55single