Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Determining Feature Importances Using Random Forest | Commonly Used Bagging Models
Ensemble Learning
course content

Зміст курсу

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

bookChallenge: Determining Feature Importances Using Random Forest

Random Forest can determine feature importances, and it's one of its useful features. Feature importance is a measure that quantifies the contribution of each feature in the dataset to the predictive performance of the Random Forest model.
To determine feature importance, we must conduct the following steps:

  1. Train the Random Forest model on the necessary dataset.
  2. Use the .feature_importances_ attribute of the trained model to get the importance values of all features. This attribute returns an array of values, each corresponding to the importance of a specific feature in the dataset. The values are normalized and sum up to 1, making comparing the relative importance of different features easier.

Завдання

The 'heart_disease' dataset is a commonly used dataset for binary classification tasks in machine learning. It contains various medical attributes related to patients' health and aims to predict the presence or absence of heart disease in an individual.

Your task is to determine the importance of features of the heart disease dataset:

  1. Use RandomForestClassifier class to create a model.
  2. Fit the classifier on the dataset.
  3. Find the importance of all features.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 6
toggle bottom row

bookChallenge: Determining Feature Importances Using Random Forest

Random Forest can determine feature importances, and it's one of its useful features. Feature importance is a measure that quantifies the contribution of each feature in the dataset to the predictive performance of the Random Forest model.
To determine feature importance, we must conduct the following steps:

  1. Train the Random Forest model on the necessary dataset.
  2. Use the .feature_importances_ attribute of the trained model to get the importance values of all features. This attribute returns an array of values, each corresponding to the importance of a specific feature in the dataset. The values are normalized and sum up to 1, making comparing the relative importance of different features easier.

Завдання

The 'heart_disease' dataset is a commonly used dataset for binary classification tasks in machine learning. It contains various medical attributes related to patients' health and aims to predict the presence or absence of heart disease in an individual.

Your task is to determine the importance of features of the heart disease dataset:

  1. Use RandomForestClassifier class to create a model.
  2. Fit the classifier on the dataset.
  3. Find the importance of all features.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 6
toggle bottom row

bookChallenge: Determining Feature Importances Using Random Forest

Random Forest can determine feature importances, and it's one of its useful features. Feature importance is a measure that quantifies the contribution of each feature in the dataset to the predictive performance of the Random Forest model.
To determine feature importance, we must conduct the following steps:

  1. Train the Random Forest model on the necessary dataset.
  2. Use the .feature_importances_ attribute of the trained model to get the importance values of all features. This attribute returns an array of values, each corresponding to the importance of a specific feature in the dataset. The values are normalized and sum up to 1, making comparing the relative importance of different features easier.

Завдання

The 'heart_disease' dataset is a commonly used dataset for binary classification tasks in machine learning. It contains various medical attributes related to patients' health and aims to predict the presence or absence of heart disease in an individual.

Your task is to determine the importance of features of the heart disease dataset:

  1. Use RandomForestClassifier class to create a model.
  2. Fit the classifier on the dataset.
  3. Find the importance of all features.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Random Forest can determine feature importances, and it's one of its useful features. Feature importance is a measure that quantifies the contribution of each feature in the dataset to the predictive performance of the Random Forest model.
To determine feature importance, we must conduct the following steps:

  1. Train the Random Forest model on the necessary dataset.
  2. Use the .feature_importances_ attribute of the trained model to get the importance values of all features. This attribute returns an array of values, each corresponding to the importance of a specific feature in the dataset. The values are normalized and sum up to 1, making comparing the relative importance of different features easier.

Завдання

The 'heart_disease' dataset is a commonly used dataset for binary classification tasks in machine learning. It contains various medical attributes related to patients' health and aims to predict the presence or absence of heart disease in an individual.

Your task is to determine the importance of features of the heart disease dataset:

  1. Use RandomForestClassifier class to create a model.
  2. Fit the classifier on the dataset.
  3. Find the importance of all features.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 6
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt