Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Solving Task Using XGBoost | Commonly Used Boosting Models
Ensemble Learning

Свайпніть щоб показати меню

book
Challenge: Solving Task Using XGBoost

Завдання

Swipe to start coding

The "Credit Scoring" dataset is commonly used for credit risk analysis and binary classification tasks. It contains information about customers and their credit applications, with the goal of predicting whether a customer's credit application will result in a good or bad credit outcome.

Your task is to solve classification task on "Credit Scoring" dataset:

  1. Create Dmatrix objects using training and test data. Specify enable_categorical argument to use categorical features.
  2. Train the XGBoost model using the training DMatrix object.
  3. Set the split threshold to 0.5 for correct class detection.

Note

'objective': 'binary:logistic' parameter means that we will use logistic loss (also known as binary cross-entropy loss) as an objective function when training the XGBoost model.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 6
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Challenge: Solving Task Using XGBoost

Завдання

Swipe to start coding

The "Credit Scoring" dataset is commonly used for credit risk analysis and binary classification tasks. It contains information about customers and their credit applications, with the goal of predicting whether a customer's credit application will result in a good or bad credit outcome.

Your task is to solve classification task on "Credit Scoring" dataset:

  1. Create Dmatrix objects using training and test data. Specify enable_categorical argument to use categorical features.
  2. Train the XGBoost model using the training DMatrix object.
  3. Set the split threshold to 0.5 for correct class detection.

Note

'objective': 'binary:logistic' parameter means that we will use logistic loss (also known as binary cross-entropy loss) as an objective function when training the XGBoost model.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 6
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt