Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Solving Task Using AdaBoost Regressor | Commonly Used Boosting Models
Ensemble Learning

book
Challenge: Solving Task Using AdaBoost Regressor

AdaBoost Regressor is an ensemble learning algorithm used for regression tasks.

The principle of work of such a regressor coincides with the principle of work of the AdaBoost Classifier. The only difference is that we use some regression algorithms (linear regression, decision tree regressor, polynomial regression, etc.) as a base model.

The AdaBoostRegressor class in Python provides tools to train the model and make predictions.

Завдання

Swipe to start coding

Your task is to create a model to solve the regression task on the diabetes dataset:

  1. Use a simple Linear Regression model as the base model of an ensemble.
  2. Create an AdaBoost Regressor model with the 50 base estimators.
  3. Print MSE to estimate regression quality.

Рішення

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Load the Wine Quality dataset
data = load_diabetes()
X = data.data
y = data.target

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Create and train the AdaBoost Regressor with Linear Regression base model
base_model = LinearRegression()
regr = AdaBoostRegressor(base_model, n_estimators=50)
regr.fit(X_train, y_train)

# Make predictions
y_pred = regr.predict(X)

# Calculate Mean Squared Error
mse = mean_squared_error(y, y_pred)
print(f'MSE: {mse:.4f}')

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Load the Wine Quality dataset
data = load_diabetes()
X = data.data
y = data.target

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Create and train the AdaBoost Regressor with Linear Regression base model
base_model = ___()
regr = ___(___, n_estimators=___)
regr.fit(X_train, y_train)

# Make predictions
y_pred = regr.predict(X)

# Calculate Mean Squared Error
mse = mean_squared_error(y, y_pred)
print(f'MSE: {___:.4f}')

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

We use cookies to make your experience better!
some-alt