Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 2 | Non-Stationary Models
Time Series Analysis
course content

Зміст курсу

Time Series Analysis

Time Series Analysis

1. Time Series: Let's Start
2. Time Series Processing
3. Time Series Visualization
4. Stationary Models
5. Non-Stationary Models
6. Solve Real Problems

bookChallenge 2

Завдання
test

Swipe to show code editor

You are faced with a task similar to the previous one: convert data to stationary. You will remove seasonality in the Seasonality Time Series.csv dataset using the difference method. Track a certain amount of time for which the time pattern repeats and use the difference method:

  1. Read the dataset.
  2. Analyze how long patterns repeat (visualize "Var" and "Date" columns of the df DataFrame in this order).
  3. Use the resulting number (it is 8) for the difference method. Perform the differentiation for the "Var" column. Save the obtained result within the df_diff variable.
  4. Visualize the transformed data.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 4
toggle bottom row

bookChallenge 2

Завдання
test

Swipe to show code editor

You are faced with a task similar to the previous one: convert data to stationary. You will remove seasonality in the Seasonality Time Series.csv dataset using the difference method. Track a certain amount of time for which the time pattern repeats and use the difference method:

  1. Read the dataset.
  2. Analyze how long patterns repeat (visualize "Var" and "Date" columns of the df DataFrame in this order).
  3. Use the resulting number (it is 8) for the difference method. Perform the differentiation for the "Var" column. Save the obtained result within the df_diff variable.
  4. Visualize the transformed data.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 4
toggle bottom row

bookChallenge 2

Завдання
test

Swipe to show code editor

You are faced with a task similar to the previous one: convert data to stationary. You will remove seasonality in the Seasonality Time Series.csv dataset using the difference method. Track a certain amount of time for which the time pattern repeats and use the difference method:

  1. Read the dataset.
  2. Analyze how long patterns repeat (visualize "Var" and "Date" columns of the df DataFrame in this order).
  3. Use the resulting number (it is 8) for the difference method. Perform the differentiation for the "Var" column. Save the obtained result within the df_diff variable.
  4. Visualize the transformed data.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання
test

Swipe to show code editor

You are faced with a task similar to the previous one: convert data to stationary. You will remove seasonality in the Seasonality Time Series.csv dataset using the difference method. Track a certain amount of time for which the time pattern repeats and use the difference method:

  1. Read the dataset.
  2. Analyze how long patterns repeat (visualize "Var" and "Date" columns of the df DataFrame in this order).
  3. Use the resulting number (it is 8) for the difference method. Perform the differentiation for the "Var" column. Save the obtained result within the df_diff variable.
  4. Visualize the transformed data.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 5. Розділ 4
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt