Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Predict Student Scores Based on Study Hours | Probability, Statistics, and Simulation
Python for Mathematics

bookChallenge: Predict Student Scores Based on Study Hours

Predicting student performance based on study habits is a practical application of regression analysis in education. By examining the relationship between the number of hours a student studies and their exam scores, you can model how changes in study time might affect outcomes. Linear regression is a statistical technique that fits a straight line to data points, allowing you to make predictions about one variable based on another. In this context, you will use Python's scikit-learn library to build a simple linear regression model, visualize the results using matplotlib, and predict the exam score for a student who studies a specific number of hours.

123456789101112131415161718192021222324252627
import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression # Example data: hours studied and corresponding exam scores hours = [2, 3, 5, 6, 8, 10] scores = [50, 55, 65, 70, 80, 90] # Prepare the data for regression (reshape for sklearn) X = np.array(hours).reshape(-1, 1) y = np.array(scores) # Fit the linear regression model model = LinearRegression() model.fit(X, y) # Predict scores for the training data predicted_scores = model.predict(X) # Plot the data and the regression line plt.scatter(hours, scores, color='blue', label='Actual Scores') plt.plot(hours, predicted_scores, color='red', label='Regression Line') plt.xlabel('Hours Studied') plt.ylabel('Exam Score') plt.title('Student Scores vs Study Hours') plt.legend() plt.show()
copy
Завдання

Swipe to start coding

Write a function that performs linear regression on two lists, hours and scores, and predicts the exam score for a given number of study hours.

  • Fit a linear regression model using hours as the independent variable and scores as the dependent variable.
  • Plot the original data points and the regression line using matplotlib.
  • Predict the exam score for the value in predict_hours and print the predicted value.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 7
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Predict Student Scores Based on Study Hours

Свайпніть щоб показати меню

Predicting student performance based on study habits is a practical application of regression analysis in education. By examining the relationship between the number of hours a student studies and their exam scores, you can model how changes in study time might affect outcomes. Linear regression is a statistical technique that fits a straight line to data points, allowing you to make predictions about one variable based on another. In this context, you will use Python's scikit-learn library to build a simple linear regression model, visualize the results using matplotlib, and predict the exam score for a student who studies a specific number of hours.

123456789101112131415161718192021222324252627
import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression # Example data: hours studied and corresponding exam scores hours = [2, 3, 5, 6, 8, 10] scores = [50, 55, 65, 70, 80, 90] # Prepare the data for regression (reshape for sklearn) X = np.array(hours).reshape(-1, 1) y = np.array(scores) # Fit the linear regression model model = LinearRegression() model.fit(X, y) # Predict scores for the training data predicted_scores = model.predict(X) # Plot the data and the regression line plt.scatter(hours, scores, color='blue', label='Actual Scores') plt.plot(hours, predicted_scores, color='red', label='Regression Line') plt.xlabel('Hours Studied') plt.ylabel('Exam Score') plt.title('Student Scores vs Study Hours') plt.legend() plt.show()
copy
Завдання

Swipe to start coding

Write a function that performs linear regression on two lists, hours and scores, and predicts the exam score for a given number of study hours.

  • Fit a linear regression model using hours as the independent variable and scores as the dependent variable.
  • Plot the original data points and the regression line using matplotlib.
  • Predict the exam score for the value in predict_hours and print the predicted value.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 7
single

single

some-alt