Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Analyze and Visualize Real-World Data | Data Visualization and Mathematical Functions
Python for Mathematics

bookChallenge: Analyze and Visualize Real-World Data

Visualizing real-world data is a fundamental skill for anyone working with mathematics or science. When you collect data—such as daily temperatures, rainfall, or measurements from experiments—it is rarely enough to just look at the raw numbers. Visualizations like line plots and histograms help you quickly spot patterns, trends, and outliers, making the information more accessible and meaningful. Understanding the distribution of your data, through measures like the mean and standard deviation, enables you to summarize large datasets with just a few numbers and supports deeper analysis. By combining summary statistics with clear visualizations, you gain insights that are difficult to achieve by looking at raw data alone.

123456789101112
# List of daily temperatures temperatures = [68, 70, 72, 71, 69, 73, 75, 74, 72, 70] # Calculate mean mean_temp = sum(temperatures) / len(temperatures) # Calculate standard deviation squared_diffs = [(x - mean_temp) ** 2 for x in temperatures] std_dev = (sum(squared_diffs) / len(temperatures)) ** 0.5 print("Mean temperature:", mean_temp) print("Standard deviation:", std_dev)
copy
Завдання

Swipe to start coding

Write a function that takes a list of daily temperatures and performs the following steps:

  • Calculate the mean of the temperatures.
  • Calculate the standard deviation of the temperatures.
  • Create a line plot showing the temperature for each day, with labeled axes and a title.
  • Create a histogram showing the distribution of temperatures, with labeled axes and a title.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Analyze and Visualize Real-World Data

Свайпніть щоб показати меню

Visualizing real-world data is a fundamental skill for anyone working with mathematics or science. When you collect data—such as daily temperatures, rainfall, or measurements from experiments—it is rarely enough to just look at the raw numbers. Visualizations like line plots and histograms help you quickly spot patterns, trends, and outliers, making the information more accessible and meaningful. Understanding the distribution of your data, through measures like the mean and standard deviation, enables you to summarize large datasets with just a few numbers and supports deeper analysis. By combining summary statistics with clear visualizations, you gain insights that are difficult to achieve by looking at raw data alone.

123456789101112
# List of daily temperatures temperatures = [68, 70, 72, 71, 69, 73, 75, 74, 72, 70] # Calculate mean mean_temp = sum(temperatures) / len(temperatures) # Calculate standard deviation squared_diffs = [(x - mean_temp) ** 2 for x in temperatures] std_dev = (sum(squared_diffs) / len(temperatures)) ** 0.5 print("Mean temperature:", mean_temp) print("Standard deviation:", std_dev)
copy
Завдання

Swipe to start coding

Write a function that takes a list of daily temperatures and performs the following steps:

  • Calculate the mean of the temperatures.
  • Calculate the standard deviation of the temperatures.
  • Create a line plot showing the temperature for each day, with labeled axes and a title.
  • Create a histogram showing the distribution of temperatures, with labeled axes and a title.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
single

single

some-alt