Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Data Type Conversion | Time Series Data Processing
Data Preprocessing
course content

Зміст курсу

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

bookData Type Conversion

Data type conversion in time series data processing is the process of converting time series data from one data type to another. Why do we need to use that? In time series data processing, this can be useful when you want to change your data format to make it easier to work with or when you want to perform calculations that require a different data type.
For example, you might convert a string representation of a date into a datetime object so that you can perform calculations on it.

Let's look at an example of converting date data from string format to datetime format:

12345678910111213
import pandas as pd # Create simple dataset with date information in string format dataset = pd.DataFrame({'PatientID': [1, 2, 3], 'Name': ['John', 'Sarah', 'Michael'], 'AdmissionDate': ['2022-03-15', '2021-11-10', '2022-02-28']}) # Convert 'AdmissionDate' column from string to datetime format dataset['AdmissionDate'] = pd.to_datetime(dataset['AdmissionDate'], format='%Y-%m-%d') # Print the converted data print('Converted types:') print(dataset.dtypes)
copy

You can change the format of the date entry template with the format argument.

We can consider different date patterns:

  • '15 Jul 2009' - '%d %m %Y';
  • '1-Feb-15' - '%d-%m-%Y';
  • '12/08/2019' - '%d/%m/%Y'.

Also, take into account that when we talk about processing time-series data, this means that we will work not only with dates but with all other data types (numeric, categorical, etc.).

Завдання

Read the 'sales.csv' dataset and convert the 'Date' column to the datetime data type.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1
toggle bottom row

bookData Type Conversion

Data type conversion in time series data processing is the process of converting time series data from one data type to another. Why do we need to use that? In time series data processing, this can be useful when you want to change your data format to make it easier to work with or when you want to perform calculations that require a different data type.
For example, you might convert a string representation of a date into a datetime object so that you can perform calculations on it.

Let's look at an example of converting date data from string format to datetime format:

12345678910111213
import pandas as pd # Create simple dataset with date information in string format dataset = pd.DataFrame({'PatientID': [1, 2, 3], 'Name': ['John', 'Sarah', 'Michael'], 'AdmissionDate': ['2022-03-15', '2021-11-10', '2022-02-28']}) # Convert 'AdmissionDate' column from string to datetime format dataset['AdmissionDate'] = pd.to_datetime(dataset['AdmissionDate'], format='%Y-%m-%d') # Print the converted data print('Converted types:') print(dataset.dtypes)
copy

You can change the format of the date entry template with the format argument.

We can consider different date patterns:

  • '15 Jul 2009' - '%d %m %Y';
  • '1-Feb-15' - '%d-%m-%Y';
  • '12/08/2019' - '%d/%m/%Y'.

Also, take into account that when we talk about processing time-series data, this means that we will work not only with dates but with all other data types (numeric, categorical, etc.).

Завдання

Read the 'sales.csv' dataset and convert the 'Date' column to the datetime data type.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 1
toggle bottom row

bookData Type Conversion

Data type conversion in time series data processing is the process of converting time series data from one data type to another. Why do we need to use that? In time series data processing, this can be useful when you want to change your data format to make it easier to work with or when you want to perform calculations that require a different data type.
For example, you might convert a string representation of a date into a datetime object so that you can perform calculations on it.

Let's look at an example of converting date data from string format to datetime format:

12345678910111213
import pandas as pd # Create simple dataset with date information in string format dataset = pd.DataFrame({'PatientID': [1, 2, 3], 'Name': ['John', 'Sarah', 'Michael'], 'AdmissionDate': ['2022-03-15', '2021-11-10', '2022-02-28']}) # Convert 'AdmissionDate' column from string to datetime format dataset['AdmissionDate'] = pd.to_datetime(dataset['AdmissionDate'], format='%Y-%m-%d') # Print the converted data print('Converted types:') print(dataset.dtypes)
copy

You can change the format of the date entry template with the format argument.

We can consider different date patterns:

  • '15 Jul 2009' - '%d %m %Y';
  • '1-Feb-15' - '%d-%m-%Y';
  • '12/08/2019' - '%d/%m/%Y'.

Also, take into account that when we talk about processing time-series data, this means that we will work not only with dates but with all other data types (numeric, categorical, etc.).

Завдання

Read the 'sales.csv' dataset and convert the 'Date' column to the datetime data type.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Data type conversion in time series data processing is the process of converting time series data from one data type to another. Why do we need to use that? In time series data processing, this can be useful when you want to change your data format to make it easier to work with or when you want to perform calculations that require a different data type.
For example, you might convert a string representation of a date into a datetime object so that you can perform calculations on it.

Let's look at an example of converting date data from string format to datetime format:

12345678910111213
import pandas as pd # Create simple dataset with date information in string format dataset = pd.DataFrame({'PatientID': [1, 2, 3], 'Name': ['John', 'Sarah', 'Michael'], 'AdmissionDate': ['2022-03-15', '2021-11-10', '2022-02-28']}) # Convert 'AdmissionDate' column from string to datetime format dataset['AdmissionDate'] = pd.to_datetime(dataset['AdmissionDate'], format='%Y-%m-%d') # Print the converted data print('Converted types:') print(dataset.dtypes)
copy

You can change the format of the date entry template with the format argument.

We can consider different date patterns:

  • '15 Jul 2009' - '%d %m %Y';
  • '1-Feb-15' - '%d-%m-%Y';
  • '12/08/2019' - '%d/%m/%Y'.

Also, take into account that when we talk about processing time-series data, this means that we will work not only with dates but with all other data types (numeric, categorical, etc.).

Завдання

Read the 'sales.csv' dataset and convert the 'Date' column to the datetime data type.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 4. Розділ 1
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt