Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge 1 | Moving on to Tasks
Data Preprocessing
course content

Зміст курсу

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

bookChallenge 1

Завдання
test

Swipe to show code editor

In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.

  1. Read the dataset 'adult-census.csv'
  2. Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the np.nan object
  3. Remove rows with missing values
  4. Let's start with processing categorical data - columns 'workclass', 'sex' Use a one-hot encoding method to encode them
  5. For numeric data ('age', 'hours-per-week'), you will need to scale the data
  6. Print processed data

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 1
toggle bottom row

bookChallenge 1

Завдання
test

Swipe to show code editor

In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.

  1. Read the dataset 'adult-census.csv'
  2. Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the np.nan object
  3. Remove rows with missing values
  4. Let's start with processing categorical data - columns 'workclass', 'sex' Use a one-hot encoding method to encode them
  5. For numeric data ('age', 'hours-per-week'), you will need to scale the data
  6. Print processed data

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 1
toggle bottom row

bookChallenge 1

Завдання
test

Swipe to show code editor

In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.

  1. Read the dataset 'adult-census.csv'
  2. Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the np.nan object
  3. Remove rows with missing values
  4. Let's start with processing categorical data - columns 'workclass', 'sex' Use a one-hot encoding method to encode them
  5. For numeric data ('age', 'hours-per-week'), you will need to scale the data
  6. Print processed data

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання
test

Swipe to show code editor

In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.

  1. Read the dataset 'adult-census.csv'
  2. Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the np.nan object
  3. Remove rows with missing values
  4. Let's start with processing categorical data - columns 'workclass', 'sex' Use a one-hot encoding method to encode them
  5. For numeric data ('age', 'hours-per-week'), you will need to scale the data
  6. Print processed data

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 6. Розділ 1
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt