Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Data Augmentation: Synthetic Data | Processing Quantitative Data
Data Preprocessing
course content

Зміст курсу

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

bookData Augmentation: Synthetic Data

Data augmentation - is an important step in training machine learning models. This method is understood as an increase in the data sample for training through the modification of existing data. Generating “synthetic” data can be useful in a variety of situations where real-world data may be difficult to obtain, insufficient, or sensitive.

This method is used when there is not enough data to train a machine-learning model. Under the lack of data, we can understand that the dataset may not be representative of the underlying population or phenomenon being studied. The sample size should be large enough to provide sufficient statistical power to detect meaningful relationships or differences. The required sample size depends on factors such as the analysis's complexity, the data's variability, and the desired level of precision. Generating synthetic data can help to supplement real-world data and provide additional training examples.

The pandas library can be used to create synthetic data with a specific structure or format. Here's an example of how to use pandas to create a synthetic dataset:

1234567891011
import pandas as pd import numpy as np # Create a sample dataset dataset = pd.DataFrame({'A': np.random.rand(10), 'B': np.random.choice(['male', 'female'], 10), 'C': np.random.randint(1, 100, 10)}) # Generate synthetic data using Pandas synthetic_data = pd.concat([dataset, dataset.sample(frac=0.5)]) print(synthetic_data)
copy

We use the pd.concat() method to concatenate the original dataframe with a randomly sampled subset of the dataframe. By setting the frac parameter to 0.5, we sample 50% of the rows from the original dataframe and append them to the end of the dataframe, effectively doubling the size of the dataframe and generating synthetic data.

Завдання
test

Swipe to show code editor

Generate a dataset with 4 columns and 5 rows using pandas.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
toggle bottom row

bookData Augmentation: Synthetic Data

Data augmentation - is an important step in training machine learning models. This method is understood as an increase in the data sample for training through the modification of existing data. Generating “synthetic” data can be useful in a variety of situations where real-world data may be difficult to obtain, insufficient, or sensitive.

This method is used when there is not enough data to train a machine-learning model. Under the lack of data, we can understand that the dataset may not be representative of the underlying population or phenomenon being studied. The sample size should be large enough to provide sufficient statistical power to detect meaningful relationships or differences. The required sample size depends on factors such as the analysis's complexity, the data's variability, and the desired level of precision. Generating synthetic data can help to supplement real-world data and provide additional training examples.

The pandas library can be used to create synthetic data with a specific structure or format. Here's an example of how to use pandas to create a synthetic dataset:

1234567891011
import pandas as pd import numpy as np # Create a sample dataset dataset = pd.DataFrame({'A': np.random.rand(10), 'B': np.random.choice(['male', 'female'], 10), 'C': np.random.randint(1, 100, 10)}) # Generate synthetic data using Pandas synthetic_data = pd.concat([dataset, dataset.sample(frac=0.5)]) print(synthetic_data)
copy

We use the pd.concat() method to concatenate the original dataframe with a randomly sampled subset of the dataframe. By setting the frac parameter to 0.5, we sample 50% of the rows from the original dataframe and append them to the end of the dataframe, effectively doubling the size of the dataframe and generating synthetic data.

Завдання
test

Swipe to show code editor

Generate a dataset with 4 columns and 5 rows using pandas.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
toggle bottom row

bookData Augmentation: Synthetic Data

Data augmentation - is an important step in training machine learning models. This method is understood as an increase in the data sample for training through the modification of existing data. Generating “synthetic” data can be useful in a variety of situations where real-world data may be difficult to obtain, insufficient, or sensitive.

This method is used when there is not enough data to train a machine-learning model. Under the lack of data, we can understand that the dataset may not be representative of the underlying population or phenomenon being studied. The sample size should be large enough to provide sufficient statistical power to detect meaningful relationships or differences. The required sample size depends on factors such as the analysis's complexity, the data's variability, and the desired level of precision. Generating synthetic data can help to supplement real-world data and provide additional training examples.

The pandas library can be used to create synthetic data with a specific structure or format. Here's an example of how to use pandas to create a synthetic dataset:

1234567891011
import pandas as pd import numpy as np # Create a sample dataset dataset = pd.DataFrame({'A': np.random.rand(10), 'B': np.random.choice(['male', 'female'], 10), 'C': np.random.randint(1, 100, 10)}) # Generate synthetic data using Pandas synthetic_data = pd.concat([dataset, dataset.sample(frac=0.5)]) print(synthetic_data)
copy

We use the pd.concat() method to concatenate the original dataframe with a randomly sampled subset of the dataframe. By setting the frac parameter to 0.5, we sample 50% of the rows from the original dataframe and append them to the end of the dataframe, effectively doubling the size of the dataframe and generating synthetic data.

Завдання
test

Swipe to show code editor

Generate a dataset with 4 columns and 5 rows using pandas.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Data augmentation - is an important step in training machine learning models. This method is understood as an increase in the data sample for training through the modification of existing data. Generating “synthetic” data can be useful in a variety of situations where real-world data may be difficult to obtain, insufficient, or sensitive.

This method is used when there is not enough data to train a machine-learning model. Under the lack of data, we can understand that the dataset may not be representative of the underlying population or phenomenon being studied. The sample size should be large enough to provide sufficient statistical power to detect meaningful relationships or differences. The required sample size depends on factors such as the analysis's complexity, the data's variability, and the desired level of precision. Generating synthetic data can help to supplement real-world data and provide additional training examples.

The pandas library can be used to create synthetic data with a specific structure or format. Here's an example of how to use pandas to create a synthetic dataset:

1234567891011
import pandas as pd import numpy as np # Create a sample dataset dataset = pd.DataFrame({'A': np.random.rand(10), 'B': np.random.choice(['male', 'female'], 10), 'C': np.random.randint(1, 100, 10)}) # Generate synthetic data using Pandas synthetic_data = pd.concat([dataset, dataset.sample(frac=0.5)]) print(synthetic_data)
copy

We use the pd.concat() method to concatenate the original dataframe with a randomly sampled subset of the dataframe. By setting the frac parameter to 0.5, we sample 50% of the rows from the original dataframe and append them to the end of the dataframe, effectively doubling the size of the dataframe and generating synthetic data.

Завдання
test

Swipe to show code editor

Generate a dataset with 4 columns and 5 rows using pandas.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 5
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt