Sum() та Count()
pandas
пропонує метод count()
, який підраховує всі ненульові комірки (ані None
, ані NaN
) для кожного стовпця.
df = pd.read_csv(file.csv)
number_of_cells = df.count()
Щоб знайти кількість ненульових значень у певному стовпці, використовуйте наступний синтаксис:
df = pd.read_csv(file.csv)
number_of_cells = df['name of the column'].count()
pandas
також надає метод sum()
. Цей метод обчислює суму значень для кожного стовпця, але працює лише з числовими або булевими стовпцями.
df = pd.read_csv(file.csv)
total = df.sum()
Оскільки метод isna()
повертає булевий DataFrame, можна використати наступний синтаксис для підрахунку кількості пропущених значень у кожному зі стовпців:
missing_values_count = df.isna().sum()
Щоб знайти суму значень у певному стовпці, використовуйте наступний синтаксис:
df = pd.read_csv(file.csv)
total = df['name of the column'].sum()
Swipe to start coding
Вам надано DataFrame
з назвою audi_cars
.
- Отримати кількість ненульових клітинок у кожному стовпці та зберегти результат у змінній
number_of_cells
. - Обчислити загальну вартість (використовуючи стовпець
'price'
) для всіх автомобілів уDataFrame
та зберегти результат у зміннійtotal_price
. - Визначити кількість відсутніх значень у кожному стовпці та зберегти результат у змінній
null_count
.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
How can I count the number of non-null values in all columns?
How do I find the sum of values in a specific column?
How can I check for missing values in my DataFrame?
Awesome!
Completion rate improved to 3.03
Sum() та Count()
Свайпніть щоб показати меню
pandas
пропонує метод count()
, який підраховує всі ненульові комірки (ані None
, ані NaN
) для кожного стовпця.
df = pd.read_csv(file.csv)
number_of_cells = df.count()
Щоб знайти кількість ненульових значень у певному стовпці, використовуйте наступний синтаксис:
df = pd.read_csv(file.csv)
number_of_cells = df['name of the column'].count()
pandas
також надає метод sum()
. Цей метод обчислює суму значень для кожного стовпця, але працює лише з числовими або булевими стовпцями.
df = pd.read_csv(file.csv)
total = df.sum()
Оскільки метод isna()
повертає булевий DataFrame, можна використати наступний синтаксис для підрахунку кількості пропущених значень у кожному зі стовпців:
missing_values_count = df.isna().sum()
Щоб знайти суму значень у певному стовпці, використовуйте наступний синтаксис:
df = pd.read_csv(file.csv)
total = df['name of the column'].sum()
Swipe to start coding
Вам надано DataFrame
з назвою audi_cars
.
- Отримати кількість ненульових клітинок у кожному стовпці та зберегти результат у змінній
number_of_cells
. - Обчислити загальну вартість (використовуючи стовпець
'price'
) для всіх автомобілів уDataFrame
та зберегти результат у зміннійtotal_price
. - Визначити кількість відсутніх значень у кожному стовпці та зберегти результат у змінній
null_count
.
Рішення
Дякуємо за ваш відгук!
single