Challenge: Scaling the Features
In this challenge, you need to scale the features using StandardScaler
. The data is the penguins dataset (encoded and with no missing values).
import pandas as pd
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed_encoded.csv')
print(df)
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed_encoded.csv') print(df)
Here is a little reminder of the StandardScaler
class.
Завдання
Swipe to start coding
- Import the class that standardizes features by making the mean equal to 0 and the variance equal to 1.
- Initialize the scaler.
- Scale the
X
matrix of features.
Рішення
import pandas as pd
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed_encoded.csv')
# Assign X,y variables
X, y = df.drop('species', axis=1), df['species']
# Initialize a sclaer and scale the X matrix
scaler = StandardScaler()
X = scaler.fit_transform(X)
print(X)
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 2. Розділ 11
import pandas as pd
from sklearn.preprocessing import ___
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/penguins_imputed_encoded.csv')
# Assign X,y variables
X, y = df.drop('species', axis=1), df['species']
# Initialize a sclaer and scale the X matrix
scaler = ___
X = ___
print(X)