Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Create a Complete ML Pipeline | Pipelines
ML Introduction with scikit-learn
course content

Зміст курсу

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

bookCreate a Complete ML Pipeline

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Завдання
test

Swipe to show code editor

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 6
toggle bottom row

bookCreate a Complete ML Pipeline

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Завдання
test

Swipe to show code editor

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 6
toggle bottom row

bookCreate a Complete ML Pipeline

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Завдання
test

Swipe to show code editor

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Завдання
test

Swipe to show code editor

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 3. Розділ 6
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt