Challenge: Putting It All Together
In this challenge, you will apply everything you learned throughout the course from data preprocessing to training and evaluating the model.





Завдання
Swipe to start coding
- Encode the target.
- Split the data so that 33% is used for the test set and the remainder for the training set.
- Make a
ColumnTransformer
to encode only the'island'
and'sex'
columns. Make sure the others columns remain untouched. Use a proper encoder for nominal data. - Fill the gaps in a
param_grid
to try the following values for the number of neighbors:[1, 3, 5, 7, 9, 12, 15, 20, 25]
. - Create a
GridSearchCV
object with theKNeighborsClassifier
as a model. - Construct a pipeline that begins with
ct
as the first step, followed by imputation using the most frequent value, standardization, and concludes withGridSearchCV
as the final estimator. - Train the model using a pipeline on the training set.
- Evaluate the model on the test set. (Print its score)
- Get a predicted target for
X_test
. - Print the best estimator found by
grid_search
.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 4. Розділ 10
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 3.13
Challenge: Putting It All Together
Свайпніть щоб показати меню
In this challenge, you will apply everything you learned throughout the course from data preprocessing to training and evaluating the model.





Завдання
Swipe to start coding
- Encode the target.
- Split the data so that 33% is used for the test set and the remainder for the training set.
- Make a
ColumnTransformer
to encode only the'island'
and'sex'
columns. Make sure the others columns remain untouched. Use a proper encoder for nominal data. - Fill the gaps in a
param_grid
to try the following values for the number of neighbors:[1, 3, 5, 7, 9, 12, 15, 20, 25]
. - Create a
GridSearchCV
object with theKNeighborsClassifier
as a model. - Construct a pipeline that begins with
ct
as the first step, followed by imputation using the most frequent value, standardization, and concludes withGridSearchCV
as the final estimator. - Train the model using a pipeline on the training set.
- Evaluate the model on the test set. (Print its score)
- Get a predicted target for
X_test
. - Print the best estimator found by
grid_search
.
Рішення
Все було зрозуміло?
Дякуємо за ваш відгук!
Awesome!
Completion rate improved to 3.13Секція 4. Розділ 10
single