Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: A/B Test Simulator | Optimizing Growth Experiments
Python for Growth Hackers

bookChallenge: A/B Test Simulator

Simulating A/B tests is a practical way to understand how different variants perform in growth experiments. By writing a Python function that models an A/B test, you can quickly analyze which version leads to better user conversion. This approach is essential for making data-driven decisions in growth hacking, as it helps you evaluate experiment outcomes with clear, reproducible calculations.

Завдання

Swipe to start coding

Write a function called ab_test_simulator that simulates an A/B test and prints which group performed better.

  • The function must take four arguments: group_a_users, group_a_conversions, group_b_users, and group_b_conversions.
  • Calculate the conversion rate for each group: conversions divided by users.
  • Print the conversion rate for each group in the format: Group A: 120/1000 converted (12.00%) and Group B: 150/980 converted (15.31%) (replace numbers with actual values and format the percentage to two decimal places).
  • Print which group performed better based on the conversion rates. If both are equal, print Both groups performed equally.
  • Ensure your code works for any integer values passed for users and conversions.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: A/B Test Simulator

Свайпніть щоб показати меню

Simulating A/B tests is a practical way to understand how different variants perform in growth experiments. By writing a Python function that models an A/B test, you can quickly analyze which version leads to better user conversion. This approach is essential for making data-driven decisions in growth hacking, as it helps you evaluate experiment outcomes with clear, reproducible calculations.

Завдання

Swipe to start coding

Write a function called ab_test_simulator that simulates an A/B test and prints which group performed better.

  • The function must take four arguments: group_a_users, group_a_conversions, group_b_users, and group_b_conversions.
  • Calculate the conversion rate for each group: conversions divided by users.
  • Print the conversion rate for each group in the format: Group A: 120/1000 converted (12.00%) and Group B: 150/980 converted (15.31%) (replace numbers with actual values and format the percentage to two decimal places).
  • Print which group performed better based on the conversion rates. If both are equal, print Both groups performed equally.
  • Ensure your code works for any integer values passed for users and conversions.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
single

single

some-alt