Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Implementing a Decision Tree | Decision Tree
Classification with Python

book
Challenge: Implementing a Decision Tree

In this challenge, you will use the titanic dataset. It holds information about passengers on the Titanic, including their age, sex, family size, etc. And the task is to predict whether a person survived or not.

import pandas as pd

df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv')
print(df.head())
1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv') print(df.head())
copy

To implement the Decision Tree, you can use the DecisionTreeClassifier from the sklearn.

Your task is to build a Decision Tree and find the best max_depth and min_samples_leaf using grid search.

Завдання

Swipe to start coding

  1. Import the DecisionTreeClassifier class from sklearn.tree.
  2. Assign an instance of DecisionTreeClassifier to the decision_tree variable.
  3. Create a dictionary for a GridSearchCV to run through [1, 2, 3, 4, 5, 6, 7] values of max_depth and [1, 2, 4, 6] values of min_samples_leaf.
  4. Create a GridSearchCV object and train it.

Рішення

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
# Read the data and assign the variables
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv')
X = df.drop(columns=['Survived'])
y = df['Survived']

decision_tree = DecisionTreeClassifier()
param_grid = {'max_depth': [1, 2, 3, 4, 5, 6, 7], 'min_samples_leaf': [1, 2, 4, 6]}
# Use `GridSearchCV` to find the best parameters
grid = GridSearchCV(decision_tree, param_grid, cv=10).fit(X, y)
# Print the best estimator and score
print(grid.best_estimator_)
print(grid.best_score_)

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 4
single

single

import pandas as pd
from sklearn.tree import ___
from sklearn.model_selection import GridSearchCV
# Read the data and assign the variables
df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv')
X = df.drop(columns=['Survived'])
y = df['Survived']

decision_tree = ___()
param_grid = {'max_depth': [1, 2, 3, 4, 5, 6, 7], '___': [1, 2, 4, 6]}
# Use `GridSearchCV` to find the best parameters
grid = GridSearchCV(decision_tree, param_grid, cv=10).___(X, y)
# Print the best estimator and score
print(grid.best_estimator_)
print(grid.best_score_)

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

We use cookies to make your experience better!
some-alt