3-variable Lineplot
With the help of the seaborn
, we can view the dynamics of the population, for example, relative to each season during 10 years by adding the third variable to our lineplot.
To initialize a lineplot based on the pandas
DataFrame, you need to input at least 4 parameters: x
, y
(columns-markers for the plot), hue
(the third variable), and data
(the DataFrame containing the data).
Look at the code below!
12345678910111213# Importing libraries needed import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c5b4ea8f-8a30-439f-9625-ddf2effbd9ac/example5.csv') # Creating the 3-variable lineplot sns.lineplot(x = 'x', y = 'y', hue = 'gender', data=df) # Showing the plot plt.show()
Swipe to start coding
- Import the
seaborn
withsns
alias. - Import the
matplotlib.pyplot
withplt
alias. - Import the
pandas
withpd
alias. - Read the file using
df
variable. - Create a 3-variable lineplot using
'year'
column for the x-value and'population'
column for the y-value and'season'
for the hue-value. - Show the plot.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 5.88Awesome!
Completion rate improved to 5.88
3-variable Lineplot
With the help of the seaborn
, we can view the dynamics of the population, for example, relative to each season during 10 years by adding the third variable to our lineplot.
To initialize a lineplot based on the pandas
DataFrame, you need to input at least 4 parameters: x
, y
(columns-markers for the plot), hue
(the third variable), and data
(the DataFrame containing the data).
Look at the code below!
12345678910111213# Importing libraries needed import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c5b4ea8f-8a30-439f-9625-ddf2effbd9ac/example5.csv') # Creating the 3-variable lineplot sns.lineplot(x = 'x', y = 'y', hue = 'gender', data=df) # Showing the plot plt.show()
Swipe to start coding
- Import the
seaborn
withsns
alias. - Import the
matplotlib.pyplot
withplt
alias. - Import the
pandas
withpd
alias. - Read the file using
df
variable. - Create a 3-variable lineplot using
'year'
column for the x-value and'population'
column for the y-value and'season'
for the hue-value. - Show the plot.
Рішення
Дякуємо за ваш відгук!
single
Awesome!
Completion rate improved to 5.88
3-variable Lineplot
Свайпніть щоб показати меню
With the help of the seaborn
, we can view the dynamics of the population, for example, relative to each season during 10 years by adding the third variable to our lineplot.
To initialize a lineplot based on the pandas
DataFrame, you need to input at least 4 parameters: x
, y
(columns-markers for the plot), hue
(the third variable), and data
(the DataFrame containing the data).
Look at the code below!
12345678910111213# Importing libraries needed import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c5b4ea8f-8a30-439f-9625-ddf2effbd9ac/example5.csv') # Creating the 3-variable lineplot sns.lineplot(x = 'x', y = 'y', hue = 'gender', data=df) # Showing the plot plt.show()
Swipe to start coding
- Import the
seaborn
withsns
alias. - Import the
matplotlib.pyplot
withplt
alias. - Import the
pandas
withpd
alias. - Read the file using
df
variable. - Create a 3-variable lineplot using
'year'
column for the x-value and'population'
column for the y-value and'season'
for the hue-value. - Show the plot.
Рішення
Дякуємо за ваш відгук!