Challenge: Build a Custom Candlestick Plot
In this challenge, you will use matplotlib to create a custom candlestick chart from a hardcoded DataFrame containing OHLC (open, high, low, close) data for seven days. Candlestick charts are essential tools for traders, offering a clear visual representation of price movements and patterns over time. Each "candle" shows the open and close prices as well as the high and low for each trading period, helping you quickly spot bullish and bearish trends. Your goal is to plot each candle in green if the close is higher than the open (bullish) and in red if the close is lower than the open (bearish). Additionally, you will annotate the chart with the highest high and the lowest low values to highlight significant price levels.
123456789101112131415161718192021222324252627282930313233343536373839404142434445import pandas as pd import matplotlib.pyplot as plt # Hardcoded OHLC data for 7 days data = { "Date": pd.date_range("2024-06-01", periods=7, freq="D"), "Open": [100, 102, 101, 103, 102, 105, 104], "High": [105, 104, 103, 106, 107, 108, 107], "Low": [99, 100, 100, 102, 101, 104, 103], "Close": [104, 101, 103, 105, 106, 106, 104], } df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(10, 6)) width = 0.6 # width of the candlestick body for idx, row in df.iterrows(): color = "green" if row["Close"] >= row["Open"] else "red" # Draw the wick (high-low line) ax.plot([idx, idx], [row["Low"], row["High"]], color="black", linewidth=1) # Draw the candle body (open-close rectangle) lower = min(row["Open"], row["Close"]) height = abs(row["Close"] - row["Open"]) rect = plt.Rectangle((idx - width/2, lower), width, height or 0.1, color=color, alpha=0.8) ax.add_patch(rect) # Annotate highest high and lowest low highest_high = df["High"].max() highest_idx = df["High"].idxmax() ax.annotate(f"High: {highest_high}", xy=(highest_idx, highest_high), xytext=(highest_idx, highest_high+0.5), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') lowest_low = df["Low"].min() lowest_idx = df["Low"].idxmin() ax.annotate(f"Low: {lowest_low}", xy=(lowest_idx, lowest_low), xytext=(lowest_idx, lowest_low-1), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') # Formatting the x-axis with dates ax.set_xticks(range(len(df))) ax.set_xticklabels(df["Date"].dt.strftime("%b %d"), rotation=45) ax.set_title("Custom Candlestick Chart") ax.set_xlabel("Date") ax.set_ylabel("Price") plt.tight_layout() plt.show()
Candlestick charts are widely used in technical analysis because they provide more information than simple line charts. By visualizing the relationship between open, close, high, and low prices, you can quickly identify market sentiment and potential reversal points.
For more on candlestick charting techniques, consider reading "Japanese Candlestick Charting Techniques" by Steve Nison.
Swipe to start coding
Plot a candlestick chart using the provided DataFrame, following these steps:
- Draw each candlestick with rectangles and lines using
matplotlib. - Color each candle body green if
close >= open, or red ifclose < open. - Annotate the chart with the highest high and lowest low values using
ax.annotate. - Format the x-axis to display the dates from the DataFrame.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Can you explain how candlestick charts help identify bullish and bearish trends?
What do the annotations for the highest high and lowest low represent on the chart?
Can you walk me through how the code determines the color of each candlestick?
Чудово!
Completion показник покращився до 4.76
Challenge: Build a Custom Candlestick Plot
Свайпніть щоб показати меню
In this challenge, you will use matplotlib to create a custom candlestick chart from a hardcoded DataFrame containing OHLC (open, high, low, close) data for seven days. Candlestick charts are essential tools for traders, offering a clear visual representation of price movements and patterns over time. Each "candle" shows the open and close prices as well as the high and low for each trading period, helping you quickly spot bullish and bearish trends. Your goal is to plot each candle in green if the close is higher than the open (bullish) and in red if the close is lower than the open (bearish). Additionally, you will annotate the chart with the highest high and the lowest low values to highlight significant price levels.
123456789101112131415161718192021222324252627282930313233343536373839404142434445import pandas as pd import matplotlib.pyplot as plt # Hardcoded OHLC data for 7 days data = { "Date": pd.date_range("2024-06-01", periods=7, freq="D"), "Open": [100, 102, 101, 103, 102, 105, 104], "High": [105, 104, 103, 106, 107, 108, 107], "Low": [99, 100, 100, 102, 101, 104, 103], "Close": [104, 101, 103, 105, 106, 106, 104], } df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(10, 6)) width = 0.6 # width of the candlestick body for idx, row in df.iterrows(): color = "green" if row["Close"] >= row["Open"] else "red" # Draw the wick (high-low line) ax.plot([idx, idx], [row["Low"], row["High"]], color="black", linewidth=1) # Draw the candle body (open-close rectangle) lower = min(row["Open"], row["Close"]) height = abs(row["Close"] - row["Open"]) rect = plt.Rectangle((idx - width/2, lower), width, height or 0.1, color=color, alpha=0.8) ax.add_patch(rect) # Annotate highest high and lowest low highest_high = df["High"].max() highest_idx = df["High"].idxmax() ax.annotate(f"High: {highest_high}", xy=(highest_idx, highest_high), xytext=(highest_idx, highest_high+0.5), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') lowest_low = df["Low"].min() lowest_idx = df["Low"].idxmin() ax.annotate(f"Low: {lowest_low}", xy=(lowest_idx, lowest_low), xytext=(lowest_idx, lowest_low-1), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') # Formatting the x-axis with dates ax.set_xticks(range(len(df))) ax.set_xticklabels(df["Date"].dt.strftime("%b %d"), rotation=45) ax.set_title("Custom Candlestick Chart") ax.set_xlabel("Date") ax.set_ylabel("Price") plt.tight_layout() plt.show()
Candlestick charts are widely used in technical analysis because they provide more information than simple line charts. By visualizing the relationship between open, close, high, and low prices, you can quickly identify market sentiment and potential reversal points.
For more on candlestick charting techniques, consider reading "Japanese Candlestick Charting Techniques" by Steve Nison.
Swipe to start coding
Plot a candlestick chart using the provided DataFrame, following these steps:
- Draw each candlestick with rectangles and lines using
matplotlib. - Color each candle body green if
close >= open, or red ifclose < open. - Annotate the chart with the highest high and lowest low values using
ax.annotate. - Format the x-axis to display the dates from the DataFrame.
Рішення
Дякуємо за ваш відгук!
single