Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Третій експеримент | Проводимо захоплюючі експерименти
Теорія ймовірностей
course content

Зміст курсу

Теорія ймовірностей

Теорія ймовірностей

1. Ознайомемося з основними правилами
2. Ймовірності декількох подій
3. Проводимо захоплюючі експерименти
4. Дискретні розподіли
5. Нормальний розподіл

book
Третій експеримент

It is time to move to the third experiment, which should be useful for we as for data scientist!

General formula:

In this experiment, we will work with the binom.cdf(k, n, p) function. This function helps calculate the probability of receiving k or less successes among n trials with the probability of success for each experiment p.

Real-life example:

Imagine that we are working for the bank, and last month the bank gained 200 customers; we know that the probability for clients to continue working with the bank is 60%. Calculate the probability that 70 or fewer customers will stay with we.

Code:

1234
from scipy.stats import binom # Calculate the probability experiment = binom.cdf(k = 70, n = 200, p = 0.60) print(experiment)
copy

Explanation:

  1. from scipy.stats import binom importing object from scipy.stats.
  2. binom.cdf(k = 70, n = 200, p=0.60) the probability of getting 70 or less successes amoung 200 trials with the probability of success 60 %

By the way, this function is one of the most commonly used. Indeed it is hard to get zero here because we need 70 or less(in this case), so 1 is a relevant result too! In comparison to the previous functions(experiments) where we would receive at least or exactly defined number of successes.

Завдання

Swipe to start coding

Imagine that we work with real research.

Our task here is to calculate the probability that 10 or fewer residents in a specific town with a population of 500 will answer yes to our question, "Do you have your housing?". The probability that the answer will be positive is 40%.

  1. Import binom object from scipy.stats.
  2. Calculate the probability that 10 or fewer people among 500 interviewees will answer "yes", the probability of receiving positive answer is 40%.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
toggle bottom row

book
Третій експеримент

It is time to move to the third experiment, which should be useful for we as for data scientist!

General formula:

In this experiment, we will work with the binom.cdf(k, n, p) function. This function helps calculate the probability of receiving k or less successes among n trials with the probability of success for each experiment p.

Real-life example:

Imagine that we are working for the bank, and last month the bank gained 200 customers; we know that the probability for clients to continue working with the bank is 60%. Calculate the probability that 70 or fewer customers will stay with we.

Code:

1234
from scipy.stats import binom # Calculate the probability experiment = binom.cdf(k = 70, n = 200, p = 0.60) print(experiment)
copy

Explanation:

  1. from scipy.stats import binom importing object from scipy.stats.
  2. binom.cdf(k = 70, n = 200, p=0.60) the probability of getting 70 or less successes amoung 200 trials with the probability of success 60 %

By the way, this function is one of the most commonly used. Indeed it is hard to get zero here because we need 70 or less(in this case), so 1 is a relevant result too! In comparison to the previous functions(experiments) where we would receive at least or exactly defined number of successes.

Завдання

Swipe to start coding

Imagine that we work with real research.

Our task here is to calculate the probability that 10 or fewer residents in a specific town with a population of 500 will answer yes to our question, "Do you have your housing?". The probability that the answer will be positive is 40%.

  1. Import binom object from scipy.stats.
  2. Calculate the probability that 10 or fewer people among 500 interviewees will answer "yes", the probability of receiving positive answer is 40%.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt