Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving the Task Using Correlation | Covariance and Correlation
Probability Theory Basics
course content

Зміст курсу

Probability Theory Basics

Probability Theory Basics

1. Basic Concepts of Probability Theory
2. Probability of Complex Events
3. Commonly Used Discrete Distributions
4. Commonly Used Continuous Distributions
5. Covariance and Correlation

bookChallenge: Solving the Task Using Correlation

Завдання
test

Swipe to show code editor

One of the most important tasks in machine learning is building a linear regression model (you can find more information in the Linear Regression with Python course).

Since we use a linear function in this model, we can use the correlation between features and target to indicate how significant a particular feature is for this model.

We will use the 'Heart Disease Dataset' now: it contains 14 features, including the predicted attribute, which refers to the presence of heart disease in the patient. Your task is to calculate attribute importance using correlation:

  1. Calculate correlations between features and target.
  2. Print these correlations in ascending order.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 3
toggle bottom row

bookChallenge: Solving the Task Using Correlation

Завдання
test

Swipe to show code editor

One of the most important tasks in machine learning is building a linear regression model (you can find more information in the Linear Regression with Python course).

Since we use a linear function in this model, we can use the correlation between features and target to indicate how significant a particular feature is for this model.

We will use the 'Heart Disease Dataset' now: it contains 14 features, including the predicted attribute, which refers to the presence of heart disease in the patient. Your task is to calculate attribute importance using correlation:

  1. Calculate correlations between features and target.
  2. Print these correlations in ascending order.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 3
toggle bottom row

bookChallenge: Solving the Task Using Correlation

Завдання
test

Swipe to show code editor

One of the most important tasks in machine learning is building a linear regression model (you can find more information in the Linear Regression with Python course).

Since we use a linear function in this model, we can use the correlation between features and target to indicate how significant a particular feature is for this model.

We will use the 'Heart Disease Dataset' now: it contains 14 features, including the predicted attribute, which refers to the presence of heart disease in the patient. Your task is to calculate attribute importance using correlation:

  1. Calculate correlations between features and target.
  2. Print these correlations in ascending order.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання
test

Swipe to show code editor

One of the most important tasks in machine learning is building a linear regression model (you can find more information in the Linear Regression with Python course).

Since we use a linear function in this model, we can use the correlation between features and target to indicate how significant a particular feature is for this model.

We will use the 'Heart Disease Dataset' now: it contains 14 features, including the predicted attribute, which refers to the presence of heart disease in the patient. Your task is to calculate attribute importance using correlation:

  1. Calculate correlations between features and target.
  2. Print these correlations in ascending order.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 5. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt