Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Compare Convergence Speed | Scaling and Model Performance
Feature Scaling and Normalization Deep Dive

bookChallenge: Compare Convergence Speed

Завдання

Swipe to start coding

You will simulate gradient descent on a simple linear regression problem to compare how feature scaling affects convergence speed.

Steps:

  1. Generate synthetic data X (one feature) and y using the relation y = 3 * X + noise.
  2. Implement a simple gradient descent function that minimizes MSE loss:
    def gradient_descent(X, y, lr, steps):
        w = 0.0
        history = []
        for _ in range(steps):
            grad = -2 * np.mean(X * (y - w * X))
            w -= lr * grad
            history.append(w)
        return np.array(history)
    
  3. Run gradient descent twice:
    • on the original X,
    • and on the standardized X_scaled = (X - mean) / std.
  4. Plot or print the loss decrease for both to see that scaling accelerates convergence.
  5. Compute and print final weights and losses for both cases.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 4
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Compare Convergence Speed

Свайпніть щоб показати меню

Завдання

Swipe to start coding

You will simulate gradient descent on a simple linear regression problem to compare how feature scaling affects convergence speed.

Steps:

  1. Generate synthetic data X (one feature) and y using the relation y = 3 * X + noise.
  2. Implement a simple gradient descent function that minimizes MSE loss:
    def gradient_descent(X, y, lr, steps):
        w = 0.0
        history = []
        for _ in range(steps):
            grad = -2 * np.mean(X * (y - w * X))
            w -= lr * grad
            history.append(w)
        return np.array(history)
    
  3. Run gradient descent twice:
    • on the original X,
    • and on the standardized X_scaled = (X - mean) / std.
  4. Plot or print the loss decrease for both to see that scaling accelerates convergence.
  5. Compute and print final weights and losses for both cases.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 4
single

single

some-alt